Mikel A Becerro

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/5290094/publications.pdf
Version: 2024-02-01

6 Quantifying patterns of resilience: What matters is the intensity, not the relevance, of contributing
11 Building up marine biodiversity loss: Artificial substrates hold lower number and abundance of low occupancy benthic and sessile species. Marine Environmental Research, 2018, 140, 190-199.

2.5

21

12 Nutritional, structural and chemical defenses of common algae species against juvenile sea urchins.
Marine Biology, 2017, 164, 1.
1.5

7
Marine Biology, 2017, 164, 1.
,
Assessing National Biodiversity Trends for Rocky and Coral Reefs through the Integration of Citizen
Science and Scientific Monitoring Programs. BioScience, 2017, 67, 134-146.
4.9

64
Science and Scientific Monitoring Programs. BioScience, 2017, 67, 134-146.

Do recreational activities affect coastal biodiversity?. Estuarine, Coastal and Shelf Science, 2016, 178,
129-136.
2.1

14

15 Can light intensity cause shifts in natural product and bacterial profiles of the sponge
1.1

12
<i><scp>A</scp>plysina aerophoba</i>?. Marine Ecology, 2016, 37, 88-105.

Palatability and chemical defences of benthic cyanobacteria to a suite of herbivores. Journal of
Experimental Marine Biology and Ecology, 2016, 474, 100-108.
19 Response of different benthic habitats to off-shore fish cages. Aquaculture Research, 2015, 46,
$1490-1500$.

The potential of trait-based approaches to contribute to marine conservation. Marine Policy, 2015, 51, 148-150.
3.25

Global conservation outcomes depend on marine protected areas with five key features. Nature, 2014, 27.8

1,367
506, 216-220.
$5.0 \quad 25$
Marine Pollution Bulletin, 2014, 86, 9-18.

Environmental Heterogeneity and Microbial Inheritance Influence Sponge-Associated Bacterial
Composition of Spongia lamella. Microbial Ecology, 2014, 68, 611-620.
$2.8 \quad 5$

Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature,
2013, 501, 539-542.
27.8

445

25 Species, trophic, and functional diversity in marine protected and non-protected areas. Journal of Sea
Research, 2012, 73, 109-116.
1.6

29

26 Preface. Advances in Marine Biology, 2012, 61, ix-x.
1.4

27 Preface: Sponge research developments. Hydrobiologia, 2012, 687, 1-2.
2.0

3

28 Preface. Advances in Marine Biology, 2012, 62, ix-x.
1.4

0
29 Temporal Trends in the Secondary Metabolite Production of the Sponge Aplysina aerophoba. Marine
Drugs, 2012, 10, 677-693.
4.688

Relationship between genetic, chemical, and bacterial diversity in the Atlanto-Mediterranean bath sponge Spongia lamella. Hydrobiologia, 2012, 687, 85-99.

Ultrastructure of the gametogenesis of the common Mediterranean starfish,Echinaster (Echinaster)
sepositus. Invertebrate Reproduction and Development, 2011, 55, 138-151.
$0.8 \quad 6$

32 Relevant Spatial Scales of Chemical Variation in Aplysina aerophoba. Marine Drugs, 2011, 9, 2499-2513.
4.6

21

33 Patterns of Chemical Diversity in the Mediterranean Sponge Spongia lamella. PLoS ONE, 2011, 6, e20844. 32

Exploring the Links between Natural Products and Bacterial Assemblages in the Sponge<i>Aplysina
3.1

54
aerophoba</i>. Applied and Environmental Microbiology, 2011, 77, 862-870.

Relationship between genetic, chemical, and bacterial diversity in the Atlanto-Mediterranean bath
sponge Spongia lamella. , 2011, , 85-99.

$37 \quad$| Intramolecular Modulation of Serine Protease Inhibitor Activity in a Marine Cyanobacterium with |
| :--- |
| Antifeedant Properties. Marine Drugs, 2010, 8, 1803-1816. |

$38 \quad$| Matching spatial distributions of the sea star Echinaster sepositus and crustose coralline algae in |
| :--- |
| shallow rocky Mediterranean communities. Marine Biology, 2010, 157, 2241-2251. |

$39 \quad$| Quantitative comparison of bacterial communities in two Mediterranean sponges. Symbiosis, 2010, 51, |
| :--- |

$239-243$.

Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe,) Tj ETQq0 00 rgBT /Overlock 10 Tf

43	Variation in multiple traits of vegetative and reproductive seagrass tissues influences plantâ€"herbivore interactions. Oecologia, 2007, 151, 675-686.	2.0	73
44	Experimental evidence of chemical deterrence against multiple herbivores in the seagrass Posidonia oceanica. Marine Ecology - Progress Series, 2007, 343, 107-114.	1.9	82
45	Chemical Defenses of Cryptic and Aposematic Gastropterid Molluscs Feeding on their Host Sponge Dysidea granulosa. Journal of Chemical Ecology, 2006, 32, 1491-1500.	1.8	32
46	Effects of monsoon-driven wave action on coral reefs of Guam and implications for coral recruitment. Coral Reefs, 2006, 25, 193-199.	2.2	25
47	The use of computer-assisted motion analysis for quantitative studies of the behaviour of barnacle	784	
48	Inhibition of coral recruitment by macroalgae and cyanobacteria. Marine Ecology - Progress Series, 2006, 323, 107-117.	1.9	357
49	Spawning of the giant barrel sponge Xestospongia muta in Belize. Coral Reefs, 2005, 24, 160-160.	2.2	23

Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus
lividus (Echinodermata, Echinoidea). Molecular Ecology, 2004, 13, 3317-3328.

51	Effects of depth and light on secondary metabolites and cyanobacterial symbionts of the sponge Dysidea granulosa. Marine Ecology - Progress Series, 2004, 280, 115-128.
$52 \quad$Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia, 2003, 135, 91-101.	
$53 \quad$Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique, 2003, 62, 279-299.	116

55 Silica Deposition in Demosponges. Progress in Molecular and Subcellular Biology, 2003, 33, $163-193$.
59 Silica deposition in Demosponges: spiculogenesis in Crambe crambe. Cell and Tissue Research, 200

$301,299-309$. | Microstructure variation in sponges sharing growth form: The encrusting demospongesDysidea |
| :--- |
| $60 \quad$ avaraandCrambe crambe. Acta Zoologica, 2000, 81, 93-107. |

Multiple Functions for Secondary Metabolites in Encrusting Marine Invertebrates. Journal of Chemical Ecology, 1997, 23, 1527-1547.

65 Title is missing!. Hydrobiologia, 1997, 355, 77-89.
2.0

48

66 Chemically-mediated interactions in benthic organisms: the chemical ecology of Crambe crambe (Porifera, Poecilosclerida). , 1997, , 77-89.

Small-scale association measures in epibenthic communities as a clue for allelochemical interactions.
Oecologia, 1996, 108, 351-360.

Feeding deterrence in sponges. The role of toxicity, physical defenses, energetic contents, and life-history stage.. Journal of Experimental Marine Biology and Ecology, 1996, 205, 187-204.

Seasonal Patterns of Toxicity in Benthic Invertebrates: The Encrusting Sponge Crambe crambe
2.7
(Poecilosclerida). Oikos, 1996, 75, 33.

Measuring toxicity in marine environments: critical appraisal of three commonly used methods.
Experientia, 1995, 51, 414-418.
1.2

21

Natural variation of toxicity in encrusting spongeCrambe crambe (Schmidt) in relation to size and
environment. Journal of Chemical Ecology, 1995, 21, 1931-1946.
1.8

48

Patterns of resource allocation to somatic, defensive, and reproductive functions in the
72 Mediterranean encrusting sponge Crambe crambe (Demospongiae, Poecilosclerida). Marine Ecology -
1.9

56
Progress Series, 1995, 124, 159-170.

