## Eduarda Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5289671/publications.pdf

Version: 2024-02-01

201 papers

7,385 citations

43 h-index 71685 **76** g-index

203 all docs

203 docs citations

times ranked

203

8606 citing authors

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 2013, 70, 204-212.                              | 5.8  | 404       |
| 2  | Silica coated magnetite particles for magnetic removal of Hg2+ from water. Journal of Colloid and Interface Science, 2010, 345, 234-240.                                                  | 9.4  | 334       |
| 3  | Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Frontiers in Microbiology, 2016, 7, 332.                                                                     | 3.5  | 272       |
| 4  | Lipids and proteinsâ€"major targets of oxidative modifications in abiotic stressed plants.<br>Environmental Science and Pollution Research, 2015, 22, 4099-4121.                          | 5.3  | 252       |
| 5  | Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants.<br>Environmental Science and Pollution Research, 2016, 23, 19002-19029.                         | 5.3  | 248       |
| 6  | Nanoscale materials and their use in water contaminants removalâ€"a review. Environmental Science and Pollution Research, 2013, 20, 1239-1260.                                            | 5.3  | 192       |
| 7  | Jacks of metal/metalloid chelation trade in plantsââ,¬â€an overview. Frontiers in Plant Science, 2015, 6,<br>192.                                                                         | 3.6  | 148       |
| 8  | ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Frontiers in Plant Science, 2015, 6, 210.                                                                                  | 3.6  | 145       |
| 9  | Silver nanoparticles in soil–plant systems. Journal of Nanoparticle Research, 2013, 15, 1.                                                                                                | 1.9  | 144       |
| 10 | Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Science of the Total Environment, 2014, 472, 834-841. | 8.0  | 137       |
| 11 | Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms.<br>Environmental Research, 2015, 138, 306-325.                                                  | 7.5  | 124       |
| 12 | Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma, 2014, 251, 1265-1283.                                               | 2.1  | 121       |
| 13 | Mercury pollution in Ria de Aveiro (Portugal): a review of the system assessment. Environmental Monitoring and Assessment, 2009, 155, 39-49.                                              | 2.7  | 120       |
| 14 | Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Frontiers in Plant Science, 2014, 5, 662.                           | 3.6  | 111       |
| 15 | Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions.<br>Environmental Science and Pollution Research, 2015, 22, 3361-3382.                        | 5.3  | 108       |
| 16 | Chromium removal from contaminated waters using nanomaterials $\hat{a} \in A$ review. TrAC - Trends in Analytical Chemistry, 2019, 118, 277-291.                                          | 11.4 | 103       |
| 17 | Optimized graphene oxide foam with enhanced performance and high selectivity for mercury removal from water. Journal of Hazardous Materials, 2016, 301, 453-461.                          | 12.4 | 89        |
| 18 | Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts. Aquatic Toxicology, 2019, 211, 181-192.                                    | 4.0  | 89        |

| #  | Article                                                                                                                                                                                                                      | IF          | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 19 | Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios. Science of the Total Environment, 2017, 601-602, 1129-1138.                                                            | 8.0         | 88        |
| 20 | Recovery of Rare Earth Elements by Carbon-Based Nanomaterialsâ€"A Review. Nanomaterials, 2019, 9, 814.                                                                                                                       | 4.1         | 87        |
| 21 | Biochemical responses and accumulation patterns of Mytilus galloprovincialis exposed to thermal stress and Arsenic contamination. Ecotoxicology and Environmental Safety, 2018, 147, 954-962.                                | 6.0         | 85        |
| 22 | Modulation of glutathione and its related enzymes in plants $\hat{a} \in \mathbb{T}^M$ responses to toxic metals and metalloids $\hat{a} \in \mathbb{T}^M$ review. Environmental and Experimental Botany, 2011, 75, 307-307. | 4.2         | 84        |
| 23 | Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Science of the Total Environment, 2009, 407, 2689-2700.                                                               | 8.0         | 82        |
| 24 | Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere, 2010, 81, 1369-1377.                                                                       | 8.2         | 79        |
| 25 | Elemental analysis for categorization of wines and authentication of their certified brand of origin. Journal of Food Composition and Analysis, 2011, 24, 548-562.                                                           | 3.9         | 77        |
| 26 | Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter. Geochimica Et Cosmochimica Acta, 2018, 220, 158-179.                         | 3.9         | 74        |
| 27 | Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere, 2009, 76, 1348-1355.                                                                        | 8.2         | 73        |
| 28 | Efficient sorbents based on magnetite coated with siliceous hybrid shells for removal of mercury ions. Journal of Materials Chemistry A, 2013, 1, 8134.                                                                      | 10.3        | 71        |
| 29 | Toxicological assessment of anthropogenic Gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis. Science of the Total Environment, 2019, 664, 626-634.                                            | 8.0         | 67        |
| 30 | Thermo-desorption: A valid tool for mercury speciation in soils and sediments?. Geoderma, 2015, 237-238, 98-104.                                                                                                             | 5.1         | 66        |
| 31 | Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in single and multi-metal contamination scenarios and its effect on growth rate. Chemosphere, 2017, 171, 208-222.                                                      | 8.2         | 65        |
| 32 | Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (Solanum tuberosum L.). Planta, 2016, 244, 1167-1183.                                                                      | 3.2         | 64        |
| 33 | Overview and challenges of mercury fractionation and speciation in soils. TrAC - Trends in Analytical Chemistry, 2016, 82, 109-117.                                                                                          | 11.4        | 64        |
| 34 | Simple and effective chitosan based films for the removal of Hg from waters: Equilibrium, kinetic and ionic competition. Chemical Engineering Journal, 2016, 300, 217-229.                                                   | 12.7        | 61        |
| 35 | Transport phenomena of nanoparticles in plants and animals/humans. Environmental Research, 2016, 151, 233-243.                                                                                                               | <b>7.</b> 5 | 60        |
| 36 | Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). Journal of Nanoparticle Research, 2013, 15, 1.                                              | 1.9         | 59        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Salt Marsh Halophyte Services to Metal–Metalloid Remediation: Assessment of the Processes and Underlying Mechanisms. Critical Reviews in Environmental Science and Technology, 2014, 44, 2038-2106.                                                       | 12.8 | 58        |
| 38 | Chitosan–genipin film, a sustainable methodology for wine preservation. Green Chemistry, 2016, 18, 5331-5341.                                                                                                                                             | 9.0  | 56        |
| 39 | Improving Growth and Productivity of Oleiferous Brassicas under Changing Environment:<br>Significance of Nitrogen and Sulphur Nutrition, and Underlying Mechanisms. Scientific World<br>Journal, The, 2012, 2012, 1-12.                                   | 2.1  | 53        |
| 40 | Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis. Chemosphere, 2020, 244, 125457.                                                                                                                                   | 8.2  | 53        |
| 41 | Lipid peroxidation vs. antioxidant modulation in the bivalve Scrobicularia plana in response to environmental mercuryâ€"Organ specificities and age effect. Aquatic Toxicology, 2011, 103, 150-158.                                                       | 4.0  | 51        |
| 42 | Simultaneous removal of trace elements from contaminated waters by living Ulva lactuca. Science of the Total Environment, 2019, 652, 880-888.                                                                                                             | 8.0  | 51        |
| 43 | Mercury cycling between the water column and surface sediments in a contaminated area. Water Research, 2006, 40, 2893-2900.                                                                                                                               | 11.3 | 49        |
| 44 | What do we know about the ecotoxicological implications of the rare earth element gadolinium in aquatic ecosystems?. Science of the Total Environment, 2021, 781, 146273.                                                                                 | 8.0  | 46        |
| 45 | Valuation of banana peels as an effective biosorbent for mercury removal under low environmental concentrations. Science of the Total Environment, 2020, 709, 135883.                                                                                     | 8.0  | 45        |
| 46 | Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4. Chemical Engineering Journal, 2009, 147, 173-179.                                                                                                                       | 12.7 | 43        |
| 47 | Impact of Seasonal Fluctuations on the Sediment-Mercury, its Accumulation and Partitioning in<br>Halimione portulacoides and Juncus maritimus Collected from Ria de Aveiro Coastal Lagoon<br>(Portugal). Water, Air, and Soil Pollution, 2011, 222, 1-15. | 2.4  | 41        |
| 48 | Mercury removal with titanosilicate ETS-4: Batch experiments and modelling. Microporous and Mesoporous Materials, 2008, 115, 98-105.                                                                                                                      | 4.4  | 40        |
| 49 | Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSEâ€214) cells. Journal of Applied Toxicology, 2015, 35, 1133-1140.                                                                   | 2.8  | 40        |
| 50 | New insights on the impacts of e-waste towards marine bivalves: The case of the rare earth element Dysprosium. Environmental Pollution, 2020, 260, 113859.                                                                                                | 7.5  | 39        |
| 51 | A green method based on living macroalgae for the removal of rare-earth elements from contaminated waters. Journal of Environmental Management, 2020, 263, 110376.                                                                                        | 7.8  | 39        |
| 52 | Mercury biomagnification in a Southern Ocean food web. Environmental Pollution, 2021, 275, 116620.                                                                                                                                                        | 7.5  | 39        |
| 53 | Removal of Arsenic from Aqueous Solutions by Sorption onto Sewage Sludge-Based Sorbent. Water, Air, and Soil Pollution, 2012, 223, 2311-2321.                                                                                                             | 2.4  | 38        |
| 54 | Improvement of historic reinforced concrete/mortars by impregnation and electrochemical methods. Cement and Concrete Composites, 2014, 49, 50-58.                                                                                                         | 10.7 | 38        |

| #  | Article                                                                                                                                                                                                                    | IF   | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles. Science of the Total Environment, 2016, 557-558, 712-721.                                                         | 8.0  | 38        |
| 56 | Graphene oxide/polyethyleneimine aerogel for high-performance mercury sorption from natural waters. Chemical Engineering Journal, 2020, 398, 125587.                                                                       | 12.7 | 38        |
| 57 | Biophysical and Biochemical Markers of Metal/Metalloid-Impacts in Salt Marsh Halophytes and Their Implications. Frontiers in Environmental Science, 2016, 4, .                                                             | 3.3  | 37        |
| 58 | The influence of temperature and salinity on the impacts of lead in Mytilus galloprovincialis. Chemosphere, 2019, 235, 403-412.                                                                                            | 8.2  | 37        |
| 59 | Will temperature rise change the biochemical alterations induced in Mytilus galloprovincialis by cerium oxide nanoparticles and mercury?. Environmental Research, 2020, 188, 109778.                                       | 7.5  | 37        |
| 60 | Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma, 2016, 253, 873-884.                                                 | 2.1  | 34        |
| 61 | Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate. Journal of Hazardous Materials, 2010, 175, 439-444.                                                                                 | 12.4 | 33        |
| 62 | Extraction of mercury water-soluble fraction from soils: An optimization study. Geoderma, 2014, 213, 255-260.                                                                                                              | 5.1  | 33        |
| 63 | Ferromagnetic Sorbents Based on Nickel Nanowires for Efficient Uptake of Mercury from Water. ACS<br>Applied Materials & Samp; Interfaces, 2014, 6, 8274-8280.                                                              | 8.0  | 33        |
| 64 | Ashes from fluidized bed combustion of residual forest biomass: recycling to soil as a viable management option. Environmental Science and Pollution Research, 2017, 24, 14770-14781.                                      | 5.3  | 33        |
| 65 | Graphene oxide induces cytotoxicity and oxidative stress in bluegill sunfish cells. Journal of Applied Toxicology, 2018, 38, 504-513.                                                                                      | 2.8  | 33        |
| 66 | Influence of salinity and rare earth elements on simultaneous removal of Cd, Cr, Cu, Hg, Ni and Pb from contaminated waters by living macroalgae. Environmental Pollution, 2020, 266, 115374.                              | 7.5  | 32        |
| 67 | Kinetics of Mercury Accumulation and Its Effects on Ulva lactuca Growth Rate at Two Salinities and Exposure Conditions. Water, Air, and Soil Pollution, 2011, 217, 689-699.                                                | 2.4  | 30        |
| 68 | Influence of temperature rise on the recovery capacity of Mytilus galloprovincialis exposed to mercury pollution. Ecological Indicators, 2018, 93, 1060-1069.                                                              | 6.3  | 30        |
| 69 | Mercury levels in Southern Ocean squid: Variability over the last decade. Chemosphere, 2020, 239, 124785.                                                                                                                  | 8.2  | 30        |
| 70 | Toxic impacts of rutile titanium dioxide in Mytilus galloprovincialis exposed to warming conditions. Chemosphere, 2020, 252, 126563.                                                                                       | 8.2  | 30        |
| 71 | Microwave treatment of biological samples for methylmercury determination by high performance liquid chromatography–cold vapour atomic fluorescence spectrometry. Analyst, The, 2001, 126, 1583-1587.                      | 3.5  | 29        |
| 72 | Negligible effect of potentially toxic elements and rare earth elements on mercury removal from contaminated waters by green, brown and red living marine macroalgae. Science of the Total Environment, 2020, 724, 138133. | 8.0  | 29        |

| #  | Article                                                                                                                                                                                                                                                           | IF                 | CITATIONS   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|
| 73 | Remediation of arsenic from contaminated seawater using manganese spinel ferrite nanoparticles: Ecotoxicological evaluation in Mytilus galloprovincialis. Environmental Research, 2019, 175, 200-212.                                                             | 7.5                | 28          |
| 74 | Synergistic Aqueous Biphasic Systems: A New Paradigm for the "One-Pot―Hydrometallurgical Recovery of Critical Metals. ACS Sustainable Chemistry and Engineering, 2019, 7, 1769-1777.                                                                              | 6.7                | 28          |
| 75 | Oxidative stress, metabolic and histopathological alterations in mussels exposed to remediated seawater by GO-PEI after contamination with mercury. Comparative Biochemistry and Physiology Part A, Molecular & Dampi, Integrative Physiology, 2020, 243, 110674. | 1.8                | 28          |
| 76 | Effect of pH on cadmium (II) removal from aqueous solution using titanosilicate ETS-4. Chemical Engineering Journal, 2009, 155, 728-735.                                                                                                                          | 12.7               | 26          |
| 77 | Changes in zooplankton communities along a mercury contamination gradient in a coastal lagoon (Ria de Aveiro, Portugal). Marine Pollution Bulletin, 2013, 76, 170-177.                                                                                            | 5.0                | 26          |
| 78 | Influence of toxic elements on the simultaneous uptake of rare earth elements from contaminated waters by estuarine macroalgae. Chemosphere, 2020, 252, 126562.                                                                                                   | 8.2                | 26          |
| 79 | Salt marsh macrophyte Phragmites australis strategies assessment for its dominance in mercury-contaminated coastal lagoon (Ria de Aveiro, Portugal). Environmental Science and Pollution Research, 2012, 19, 2879-2888.                                           | 5.3                | 25          |
| 80 | Eriophorum angustifolium and Lolium perenne metabolic adaptations to metals- and metalloids-induced anomalies in the vicinity of a chemical industrial complex. Environmental Science and Pollution Research, 2013, 20, 568-581.                                  | 5.3                | 25          |
| 81 | Assessment of marine macroalgae potential for gadolinium removal from contaminated aquatic systems. Science of the Total Environment, 2020, 749, 141488.                                                                                                          | 8.0                | 25          |
| 82 | Uptake of Hg2+ from aqueous solutions by microporous titano- and zircono-silicates. Quimica Nova, 2008, 31, 321-325.                                                                                                                                              | 0.3                | 24          |
| 83 | Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-10. Chemical Engineering Journal, 2009, 155, 108-114.                                                                                                                              | 12.7               | 23          |
| 84 | Assessment of Mercury in Water, Sediments and Biota of a Southern European Estuary (Sado Estuary,) Tj ETQq0                                                                                                                                                       | 0 <u>9 r</u> gBT / | Overlock 10 |
| 85 | Extraction of available and labile fractions of mercury from contaminated soils: The role of operational parameters. Geoderma, 2015, 259-260, 213-223.                                                                                                            | 5.1                | 23          |
| 86 | How safe are the new green energy resources for marine wildlife? The case of lithium. Environmental Pollution, 2020, 267, 115458.                                                                                                                                 | 7.5                | 23          |
| 87 | Seasonal Variation of Surface Sediments Composition in Mondego River Estuary. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 317-329.                                                   | 1.7                | 22          |
| 88 | Competitive Removal of Cd2+ and Hg2+ lons from Water Using Titanosilicate ETS-4: Kinetic Behaviour and Selectivity. Water, Air, and Soil Pollution, 2013, 224, $1$ .                                                                                              | 2.4                | 22          |
| 89 | Experimental Measurement and Modeling of Hg(II) Removal from Aqueous Solutions Using Eucalyptus globulus Bark: Effect of pH, Salinity and Biosorbent Dosage. International Journal of Molecular Sciences, 2019, 20, 5973.                                         | 4.1                | 21          |
| 90 | Evidences of metabolic alterations and cellular damage in mussels after short pulses of Ti contamination. Science of the Total Environment, 2019, 650, 987-995.                                                                                                   | 8.0                | 21          |

| #   | Article                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Immunosuppression in the infaunal bivalve Scrobicularia plana environmentally exposed to mercury and association with its accumulation. Chemosphere, 2011, 82, 1541-1546.                                                                                                                              | 8.2  | 20        |
| 92  | Potassium-induced alleviation of salinity stress in Brassica campestris L Open Life Sciences, 2011, 6, 1054-1063.                                                                                                                                                                                      | 1.4  | 20        |
| 93  | Barn owl feathers as biomonitors of mercury: sources of variation in sampling procedures. Ecotoxicology, 2016, 25, 469-480.                                                                                                                                                                            | 2.4  | 20        |
| 94  | Does pre-exposure to warming conditions increase Mytilus galloprovincialis tolerance to Hg contamination?. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 203, 1-11.                                                                                             | 2.6  | 20        |
| 95  | Biochemical and histopathological impacts of rutile and anatase (TiO2 forms) in Mytilus galloprovincialis. Science of the Total Environment, 2020, 719, 134886.                                                                                                                                        | 8.0  | 20        |
| 96  | The role of operational parameters on the uptake of mercury by dithiocarbamate functionalized particles. Chemical Engineering Journal, 2014, 254, 559-570.                                                                                                                                             | 12.7 | 19        |
| 97  | Can contaminated waters or wastewater be alternative sources for technology-critical elements? The case of removal and recovery of lanthanides. Journal of Hazardous Materials, 2019, 380, 120845.                                                                                                     | 12.4 | 19        |
| 98  | Potential impacts of lanthanum and yttrium through embryotoxicity assays with Crassostrea gigas. Ecological Indicators, 2020, 108, 105687.                                                                                                                                                             | 6.3  | 19        |
| 99  | The significance of cephalopod beaks in marine ecology studies: Can we use beaks for DNA analyses and mercury contamination assessment?. Marine Pollution Bulletin, 2016, 103, 220-226.                                                                                                                | 5.0  | 18        |
| 100 | Green Graphene–Chitosan Sorbent Materials for Mercury Water Remediation. Nanomaterials, 2020, 10, 1474.                                                                                                                                                                                                | 4.1  | 18        |
| 101 | Nutshells as Efficient Biosorbents to Remove Cadmium, Lead, and Mercury from Contaminated Solutions. International Journal of Environmental Research and Public Health, 2021, 18, 1580.                                                                                                                | 2.6  | 18        |
| 102 | Valuable Nutrients from Ulva rigida: Modulation by Seasonal and Cultivation Factors. Applied Sciences (Switzerland), 2021, 11, 6137.                                                                                                                                                                   | 2.5  | 18        |
| 103 | Competitive effects on mercury removal by an agricultural waste: application to synthetic and natural spiked waters. Environmental Technology (United Kingdom), 2014, 35, 661-673.                                                                                                                     | 2.2  | 17        |
| 104 | Modulation of glutathione and its dependent enzymes in gill cells of Anguilla anguilla exposed to silica coated iron oxide nanoparticles with or without mercury co-exposure under in vitro condition. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 162, 7-14. | 2.6  | 17        |
| 105 | Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: evidence of Cd, As and Ba fronts in upper layers. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 131, 133-143.                                                          | 1.4  | 17        |
| 106 | Sustainable recovery of neodymium and dysprosium from waters through seaweeds: Influence of operational parameters. Chemosphere, 2021, 280, 130600.                                                                                                                                                    | 8.2  | 17        |
| 107 | Toxicity beyond accumulation of Titanium after exposure of Mytilus galloprovincialis to spiked seawater. Environmental Pollution, 2019, 244, 845-854.                                                                                                                                                  | 7.5  | 16        |
| 108 | Competition among rare earth elements on sorption onto six seaweeds. Journal of Rare Earths, 2021, 39, 734-741.                                                                                                                                                                                        | 4.8  | 16        |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Inputs of organic carbon from Ria de Aveiro coastal lagoon to the Atlantic Ocean. Estuarine, Coastal and Shelf Science, 2008, 79, 751-757.                                                                                                                                        | 2.1 | 15        |
| 110 | Relationships Between Carbon Sources, Trophic Level and Mercury Exposure in Generalist Shorebirds Revealed by Stable Isotope Ratios in Chicks. Waterbirds, 2009, 32, 311-321.                                                                                                     | 0.3 | 15        |
| 111 | Assessment of cytotoxicity and oxidative stress induced by titanium oxide nanoparticles on Chinook salmon cells. Environmental Science and Pollution Research, 2015, 22, 15571-15578.                                                                                             | 5.3 | 15        |
| 112 | Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context. Marine Environmental Research, 2019, 150, 104757.                                                                                         | 2.5 | 15        |
| 113 | Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues. Environmental Science and Pollution Research, 2015, 22, 2239-2246.                                                 | 5.3 | 14        |
| 114 | Mercury accumulation in gentoo penguins Pygoscelis papua: spatial, temporal and sexual intraspecific variations. Polar Biology, 2015, 38, 1335-1343.                                                                                                                              | 1.2 | 14        |
| 115 | Generalist seabirds as biomonitors of ocean mercury: The importance of accurate trophic position assignment. Science of the Total Environment, 2020, 740, 140159.                                                                                                                 | 8.0 | 14        |
| 116 | Platinum-group elements sorption by living macroalgae under different contamination scenarios. Journal of Environmental Chemical Engineering, 2021, 9, 105100.                                                                                                                    | 6.7 | 14        |
| 117 | Can the recycling of europium from contaminated waters be achieved through living macroalgae? Study on accumulation and toxicological impacts under realistic concentrations. Science of the Total Environment, 2021, 786, 147176.                                                | 8.0 | 14        |
| 118 | The Influence of Diet on Mercury Intake by Little Tern Chicks. Archives of Environmental Contamination and Toxicology, 2008, 55, 317-328.                                                                                                                                         | 4.1 | 13        |
| 119 | Mercury uptake and allocation in Juncus maritimus: implications for phytoremediation and restoration of a mercury contaminated salt marsh. Journal of Environmental Monitoring, 2012, 14, 2181.                                                                                   | 2.1 | 13        |
| 120 | Interference of the co-exposure of mercury with silica-coated iron oxide nanoparticles can modulate genotoxicity induced by their individual exposuresâ€"a paradox depicted in fish under in vitro conditions. Environmental Science and Pollution Research, 2015, 22, 3687-3696. | 5.3 | 13        |
| 121 | Functionalized magnetite particles for adsorption of colloidal noble metal nanoparticles. Journal of Colloid and Interface Science, 2016, 475, 96-103.                                                                                                                            | 9.4 | 13        |
| 122 | Genome-wide identification and expression profiling of EIL gene family in woody plant representative poplar (Populus trichocarpa). Archives of Biochemistry and Biophysics, 2017, 627, 30-45.                                                                                     | 3.0 | 13        |
| 123 | How Ulva lactuca can influence the impacts induced by the rare earth element Gadolinium in Mytilus galloprovincialis? The role of macroalgae in water safety towards marine wildlife. Ecotoxicology and Environmental Safety, 2021, 215, 112101.                                  | 6.0 | 13        |
| 124 | Inputs from a Mercury-Contaminated Lagoon: Impact on the Nearshore Waters of the Atlantic Ocean. Journal of Coastal Research, 2008, 2, 28-38.                                                                                                                                     | 0.3 | 12        |
| 125 | Mercury-Induced Chromosomal Damage in Wild Fish (Dicentrarchus labrax L.) Reflecting Aquatic Contamination in Contrasting Seasons. Archives of Environmental Contamination and Toxicology, 2012, 63, 554-562.                                                                     | 4.1 | 12        |
| 126 | PCBs in the fish assemblage of a southern European estuary. Journal of Sea Research, 2013, 76, 22-30.                                                                                                                                                                             | 1.6 | 12        |

| #   | Article                                                                                                                                                                                                                                                    | IF                    | CITATIONS  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| 127 | Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla) Tj ETQq1 1                                         | . 0.78 <b>43</b> 14 r | gBT4Overlo |
| 128 | The Role of Temperature on the Impact of Remediated Water towards Marine Organisms. Water (Switzerland), 2020, 12, 2148.                                                                                                                                   | 2.7                   | 12         |
| 129 | Will climate changes enhance the impacts of e-waste in aquatic systems?. Chemosphere, 2022, 288, 132264.                                                                                                                                                   | 8.2                   | 12         |
| 130 | Optimization of Nd(III) removal from water by Ulva sp. and Gracilaria sp. through Response Surface Methodology. Journal of Environmental Chemical Engineering, 2021, 9, 105946.                                                                            | 6.7                   | 12         |
| 131 | Main drivers of mercury levels in Southern Ocean lantern fish Myctophidae. Environmental Pollution, 2020, 264, 114711.                                                                                                                                     | <b>7.</b> 5           | 12         |
| 132 | Feathers as a Tool to Assess Mercury Contamination in Gentoo Penguins: Variations at the Individual Level. PLoS ONE, 2015, 10, e0137622.                                                                                                                   | 2.5                   | 12         |
| 133 | Granulometric selectivity in Liza ramado and potential contamination resulting from heavy metal load in feeding areas. Estuarine, Coastal and Shelf Science, 2008, 80, 281-288.                                                                            | 2.1                   | 11         |
| 134 | Differential Sex, Morphotype and Tissue Accumulation of Mercury in the Crab Carcinus maenas. Water, Air, and Soil Pollution, 2011, 222, 65-75.                                                                                                             | 2.4                   | 11         |
| 135 | Major, minor, trace and rare earth elements in sediments of the Bijag $\tilde{A}^3$ s archipelago, Guinea-Bissau. Marine Pollution Bulletin, 2018, 129, 829-834.                                                                                           | 5.0                   | 11         |
| 136 | Can water remediated by manganese spinel ferrite nanoparticles be safe for marine bivalves?. Science of the Total Environment, 2020, 723, 137798.                                                                                                          | 8.0                   | 11         |
| 137 | Metal Recovery, Separation and/or Pre-concentration. , 2012, , 237-322.                                                                                                                                                                                    |                       | 10         |
| 138 | Oxidative stress status, antioxidant metabolism and polypeptide patterns in Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon (Portugal). Environmental Science and Pollution Research, 2014, 21, 6652-6661. | 5.3                   | 10         |
| 139 | Juncus maritimus root biochemical assessment for its mercury stabilization potential in Ria de Aveiro coastal lagoon (Portugal). Environmental Science and Pollution Research, 2015, 22, 2231-2238.                                                        | 5.3                   | 10         |
| 140 | Metal partitioning and availability in estuarine surface sediments: Changes promoted by feeding activity of Scrobicularia plana and Liza ramada. Estuarine, Coastal and Shelf Science, 2015, 167, 240-247.                                                 | 2.1                   | 10         |
| 141 | Effect of historical contamination in the fish community structure of a recovering temperate coastal lagoon. Marine Pollution Bulletin, 2016, 111, 221-230.                                                                                                | 5.0                   | 10         |
| 142 | Bioaccumulation and ecotoxicological responses of clams exposed to terbium and carbon nanotubes: Comparison between native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) species. Science of the Total Environment, 2021, 784, 146914.     | 8.0                   | 10         |
| 143 | Salinity influences on the response of Mytilus galloprovincialis to the rare-earth element lanthanum. Science of the Total Environment, 2021, 794, 148512.                                                                                                 | 8.0                   | 10         |
| 144 | Mercury Removal from Aqueous Solution Using ETS-4 in the Presence of Cations of Distinct Sizes. Materials, 2021, 14, 11.                                                                                                                                   | 2.9                   | 10         |

| #   | Article                                                                                                                                                                                                                                                                                       | IF       | CITATIONS     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|
| 145 | Major and minor element geochemistry of deep-sea sediments in the Azores Platform and southern seamount region. Marine Pollution Bulletin, 2013, 75, 264-275.                                                                                                                                 | 5.0      | 9             |
| 146 | Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction. Environmental Science and Pollution Research, 2015, 22, 15443-15448.                                                                                               | 5.3      | 9             |
| 147 | An international proficiency test as a tool to evaluate mercury determination in environmental matrices. TrAC - Trends in Analytical Chemistry, 2015, 64, 136-148.                                                                                                                            | 11.4     | 9             |
| 148 | Purification of mercury-contaminated water using new AM-11 and AM-14 microporous silicates. Separation and Purification Technology, 2020, 239, 116438.                                                                                                                                        | 7.9      | 9             |
| 149 | Spinel-type ferrite nanoparticles for removal of arsenic(V) from water. Environmental Science and Pollution Research, 2020, 27, 22523-22534.                                                                                                                                                  | 5.3      | 9             |
| 150 | Response surface approach to optimize the removal of the critical raw material dysprosium from water through living seaweeds. Journal of Environmental Management, 2021, 300, 113697.                                                                                                         | 7.8      | 9             |
| 151 | Potentialities of Agro-Based Wastes to Remove Cd, Hg, Pb, and As from Contaminated Waters. Water, Air, and Soil Pollution, 2022, 233, 1.                                                                                                                                                      | 2.4      | 9             |
| 152 | Mobility of contaminants in relation to dredging operations in a mesotidal estuary (Tagus estuary,) Tj ETQq0 0 0                                                                                                                                                                              | rgBT/Ove | rlogk 10 Tf 5 |
| 153 | Kinetics of Mercury Bioaccumulation in the Polychaete Hediste diversicolor and in the Bivalve Scrobicularia plana, Through a Dietary Exposure Pathway. Water, Air, and Soil Pollution, 2012, 223, 421-428.                                                                                    | 2.4      | 8             |
| 154 | Phenological development stages variation versus mercury tolerance, accumulation, and allocation in salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in Ria de Aveiro coastal lagoon (Portugal). Environmental Science and Pollution Research, 2013, 20, 3910-3922. | 5.3      | 8             |
| 155 | Biocompatibility and biotoxicity of in-situ synthesized carboxylated nanodiamond-cobalt oxide nanocomposite. Journal of Materials Science and Technology, 2017, 33, 879-888.                                                                                                                  | 10.7     | 8             |
| 156 | Reliable quantification of mercury in natural waters using surface modified magnetite nanoparticles. Chemosphere, 2019, 220, 565-573.                                                                                                                                                         | 8.2      | 8             |
| 157 | Rare earth elements in mud volcano sediments from the Gulf of Cadiz, South Iberian Peninsula. Science of the Total Environment, 2019, 652, 869-879.                                                                                                                                           | 8.0      | 8             |
| 158 | Water softening using graphene oxide/biopolymer hybrid nanomaterials. Journal of Environmental Chemical Engineering, 2021, 9, 105045.                                                                                                                                                         | 6.7      | 8             |
| 159 | Assessing Mercury Mobility in Sediment of the Union Canal, Scotland, UK by Sequential Extraction and Thermal Desorption. Archives of Environmental Contamination and Toxicology, 2019, 76, 650-656.                                                                                           | 4.1      | 7             |
| 160 | A Single Digestion Procedure for Determination of Major, Trace, and Rare Earth Elements in Sediments. Water, Air, and Soil Pollution, 2020, 231, 1.                                                                                                                                           | 2.4      | 7             |
| 161 | High affinity of 3D spongin scaffold towards Hg(II) in real waters. Journal of Hazardous Materials, 2021, 407, 124807.                                                                                                                                                                        | 12.4     | 7             |
| 162 | Multi-elemental composition of white and dark muscles in swordfish. Food Chemistry, 2021, 343, 128438.                                                                                                                                                                                        | 8.2      | 7             |

| #   | Article                                                                                                                                                                                                                                                                                    | IF  | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Monitoring of mercury in the mesopelagic domain of the Pacific and Atlantic oceans using body feathers of Bulwer's petrel as a bioindicator. Science of the Total Environment, 2021, 775, 145796.                                                                                          | 8.0 | 7         |
| 164 | Do climate change related factors modify the response of Mytilus galloprovincialis to lanthanum? The case of temperature rise. Chemosphere, 2022, 307, 135577.                                                                                                                             | 8.2 | 7         |
| 165 | Monitoring acid-volatile sulphide by a fast scan voltammetric method: application to mercury contamination studies in salt marsh sediments. Analytica Chimica Acta, 2004, 524, 127-131.                                                                                                    | 5.4 | 6         |
| 166 | Water column characterisation on the Azores platform and at the sea mounts south of the archipelago. Marine Pollution Bulletin, 2012, 64, 1884-1894.                                                                                                                                       | 5.0 | 6         |
| 167 | Efficiency of a cleanup technology to remove mercury from natural waters by means of rice husk biowaste: ecotoxicological and chemical approach. Environmental Science and Pollution Research, 2014, 21, 8146-8156.                                                                        | 5.3 | 6         |
| 168 | Evidence for contrasting accumulation pattern of cadmium in relation to other elements in Senilia senilis and Tagelus adansoni from the Bijag $\tilde{A}^3$ s archipelago, Guinea-Bissau. Environmental Science and Pollution Research, 2017, 24, 24896-24906.                             | 5.3 | 6         |
| 169 | Ultra sensitive quantification of Hg2+†sorption by functionalized nanoparticles using radioactive tracker spectroscopy. Microchemical Journal, 2018, 138, 418-423.                                                                                                                         | 4.5 | 6         |
| 170 | Bioaccumulation and biochemical patterns of Ruditapes philippinarum clams: Responses to seasonality and low contamination levels. Estuarine, Coastal and Shelf Science, 2020, 243, 106883.                                                                                                 | 2.1 | 6         |
| 171 | Cephalopod beak sections used to trace mercury levels throughout the life of cephalopods: The giant warty squid Moroteuthopsis longimana as a case study. Marine Environmental Research, 2020, 161, 105049.                                                                                | 2.5 | 6         |
| 172 | Untangling causes of variation in mercury concentration between flight feathers. Environmental Pollution, 2021, 269, 116105.                                                                                                                                                               | 7.5 | 6         |
| 173 | Sustainable Water Treatment: Use of Agricultural and Industrial Wastes to Remove Mercury by Biosorption. Water, Air, and Soil Pollution, 2021, 232, 1.                                                                                                                                     | 2.4 | 6         |
| 174 | In Vitro Hepatotoxic and Neurotoxic Effects of Titanium and Cerium Dioxide Nanoparticles, Arsenic and Mercury Co-Exposure. International Journal of Molecular Sciences, 2022, 23, 2737.                                                                                                    | 4.1 | 6         |
| 175 | Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.). Environmental Science and Pollution Research, 2015, 22, 18574-18589. | 5.3 | 5         |
| 176 | Biochemical and physiological alterations induced in Diopatra neapolitana after a long-term exposure to Arsenic. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 189, 1-9.                                                                            | 2.6 | 5         |
| 177 | Selective incorporation of rare earth elements by seaweeds from Cape Mondego, western Portuguese coast. Science of the Total Environment, 2021, 795, 148860.                                                                                                                               | 8.0 | 5         |
| 178 | Biochemical alterations caused by lanthanum and gadolinium in Mytilus galloprovincialis after exposure and recovery periods. Environmental Pollution, 2022, 307, 119387.                                                                                                                   | 7.5 | 5         |
| 179 | Mercury's mitochondrial targeting with increasing age in Scrobicularia plana inhabiting a contaminated lagoon: Damage-protection dichotomy and organ specificities. Chemosphere, 2013, 92, 1231-1237.                                                                                      | 8.2 | 4         |
| 180 | Pedotransfer functions of potentially toxic elements in tropical soils cultivated with vegetable crops. Environmental Science and Pollution Research, 2018, 25, 12702-12712.                                                                                                               | 5.3 | 4         |

| #   | Article                                                                                                                                                                                                                 | IF  | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Toxic Effects of Metal Nanoparticles in Marine Invertebrates. Engineering Materials, 2019, , 175-224.                                                                                                                   | 0.6 | 4         |
| 182 | Bioaccumulation processes for mercury removal from saline waters by green, brown and red living marine macroalgae. Environmental Science and Pollution Research, 2021, 28, 30255-30266.                                 | 5.3 | 4         |
| 183 | H9c2(2-1)-based sulforhodamine B assay as a possible alternative inÂvitro platform to investigate effluent and metals toxicity on fish. Chemosphere, 2021, 275, 130009.                                                 | 8.2 | 4         |
| 184 | The Influence of Temperature Increase on the Toxicity of Mercury Remediated Seawater Using the Nanomaterial Graphene Oxide on the Mussel Mytilus galloprovincialis. Nanomaterials, 2021, 11, 1978.                      | 4.1 | 4         |
| 185 | Elemental composition of whole body soft tissues in bivalves from the Bijag $\tilde{A}^3$ s Archipelago, Guinea-Bissau. Environmental Pollution, 2021, 288, 117705.                                                     | 7.5 | 4         |
| 186 | Effective and simple removal of Hg from real waters by a robust bio-nanocomposite. Environmental Science: Nano, 2022, 9, 1156-1167.                                                                                     | 4.3 | 4         |
| 187 | Effect of Organic Matter on Determination of Reactive Mercury in Contaminated Waters.<br>International Journal of Environmental Analytical Chemistry, 2003, 83, 81-88.                                                  | 3.3 | 3         |
| 188 | A Multidisciplinary Approach to Evaluate the Efficiency of a Clean-Up Technology to Remove Mercury from Water. Bulletin of Environmental Contamination and Toxicology, 2014, 93, 138-143.                               | 2.7 | 3         |
| 189 | Are Early Somatic Embryos of the Norway Spruce (Picea abies (L.) Karst.) Organised?. PLoS ONE, 2015, 10, e0144093.                                                                                                      | 2.5 | 3         |
| 190 | Phagocytic cell responses to silica-coated dithiocarbamate-functionalized iron oxide nanoparticles and mercury co-exposures in Anguilla anguilla L Environmental Science and Pollution Research, 2016, 23, 12272-12286. | 5.3 | 3         |
| 191 | Trace elements' reference levels in blood of breeding black-browed albatrosses Thalassarche melanophris from the Falkland Islands. Environmental Science and Pollution Research, 2020, 27, 39265-39273.                 | 5.3 | 3         |
| 192 | Oxidative stress, metabolic activity and mercury concentrations in Antarctic krill Euphausia superba and myctophid fish of the Southern Ocean. Marine Pollution Bulletin, 2021, 166, 112178.                            | 5.0 | 3         |
| 193 | Lifelong mercury bioaccumulation in Atlantic horse mackerel (Trachurus trachurus) and the potential risks to human consumption. Marine Pollution Bulletin, 2021, 173, 113015.                                           | 5.0 | 3         |
| 194 | The influence of salinity on the toxicity of remediated seawater. Environmental Science and Pollution Research, 2022, 29, 32967-32987.                                                                                  | 5.3 | 3         |
| 195 | Factors influencing sorption of trace elements in contaminated waters onto ground nut shells. Journal of Environmental Management, 2022, 308, 114618.                                                                   | 7.8 | 3         |
| 196 | Evaluation of cotton burdock (Arctium tomentosum Mill.) responses to multi-metal exposure. Environmental Science and Pollution Research, 2017, 24, 5431-5438.                                                           | 5.3 | 2         |
| 197 | Oxidative Stress Biomarkers and Antioxidant Defense in Plants Exposed to Metallic Nanoparticles. , 2019, , 427-439.                                                                                                     |     | 2         |
| 198 | Influence of UV degradation of bioplastics on the amplification of mercury bioavailability in aquatic environments. Marine Pollution Bulletin, 2022, 180, 113806.                                                       | 5.0 | 2         |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Morphological, compositional and ultrastructural changes in the Scrobicularia plana shell in response to environmental mercury – An indelible fingerprint of metal exposure?. Chemosphere, 2013, 90, 2697-2704. | 8.2 | 1         |
| 200 | Promising Algae-Based Biotechnology for Terbium Removal and Recovery from Waste(Water). , 2021, , 1-25.                                                                                                         |     | 0         |
| 201 | Promising Algae-Based Biotechnology for Terbium Removal and Recovery from Waste(Water). , 2022, , 1885-1909.                                                                                                    |     | O         |