Rodrigo Orefice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5289613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer, 2004, 45, 7193-7202.	3.8	563
2	Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Materials Science and Engineering C, 2015, 52, 22-30.	7.3	145
3	Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. International Journal of Pharmaceutics, 2009, 381, 77-83.	5.2	105
4	Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. Journal of Materials Science: Materials in Medicine, 2005, 16, 1045-1050.	3.6	93
5	Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polymer Degradation and Stability, 2010, 95, 491-499.	5.8	93
6	Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions. European Polymer Journal, 2007, 43, 3510-3521.	5.4	90
7	Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydrate Polymers, 2016, 136, 210-215.	10.2	88
8	What Changes in Poly(3-Hydroxybutyrate) (PHB) When Processed as Electrospun Nanofibers or Thermo-Compression Molded Film?. Materials Research, 2016, 19, 57-66.	1.3	83
9	Porous biodegradable polyurethane nanocomposites: preparation, characterization, and biocompatibility tests. Materials Research, 2010, 13, 211-218.	1.3	81
10	Biomaterial with chemically engineered surface for protein immobilization. Journal of Materials Science: Materials in Medicine, 2005, 16, 333-340.	3.6	80
11	FTIR and UV‒vis study of chemically engineered biomaterial surfaces for protein immobilization. Spectroscopy, 2002, 16, 351-360.	0.8	72
12	Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. Journal of Applied Polymer Science, 2013, 127, 3613-3621.	2.6	71
13	Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. European Journal of Pharmaceutical Sciences, 2011, 42, 406-415.	4.0	68
14	Photopolymerizable and injectable polyurethanes for biomedical applications: Synthesis and biocompatibility. Acta Biomaterialia, 2010, 6, 3056-3066.	8.3	63
15	Sol–gel silica based networks with controlled chemical properties. Journal of Non-Crystalline Solids, 2000, 273, 109-115.	3.1	61
16	Aplicações farmacêuticas de polÃmeros. Polimeros, 2010, 20, 51-64.	0.7	60
17	Novel multicomponent silicate–poly(vinyl alcohol) hybrids with controlled reactivity. Journal of Non-Crystalline Solids, 2000, 273, 180-185.	3.1	58
18	Sol–gel derived composite from bioactive glass–polyvinyl alcohol. Journal of Materials Science, 2008, 43, 494-502.	3.7	57

2

#	Article	IF	CITATIONS
19	In situ evaluation of the polymerization kinetics and corresponding evolution of the mechanical properties of dental composites. Polymer Testing, 2003, 22, 77-81.	4.8	56
20	Development of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne. Journal of Microencapsulation, 2007, 24, 395-407.	2.8	53
21	Sol-Gel transition and structural evolution on multicomponent gels derived from the alumina-silica system. Journal of Sol-Gel Science and Technology, 1997, 9, 239-249.	2.4	51
22	Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route. Materials Science and Engineering C, 2011, 31, 414-422.	7.3	48
23	In vitro and in vivo ocular biocompatibility of electrospun poly(É›-caprolactone) nanofibers. European Journal of Pharmaceutical Sciences, 2015, 73, 9-19.	4.0	48
24	Polymeric films containing pomegranate peel extract based on PVA/starch/PAA blends for use as wound dressing: In vitro analysis and physicochemical evaluation. Materials Science and Engineering C, 2020, 109, 110643.	7.3	48
25	Surface Functionalization of Porous Glass Networks:Â Effects on Bovine Serum Albumin and Porcine Insulin Immobilization. Biomacromolecules, 2000, 1, 789-797.	5.4	46
26	Design, characterization and preliminary in vitro evaluation of a mucoadhesive polymer based on modified pectin and acrylic monomers with potential use as a pharmaceutical excipient. Carbohydrate Polymers, 2015, 121, 372-381.	10.2	46
27	Processing, characterization and properties of conducting polyaniline-sulfonated SEBS block copolymers. European Polymer Journal, 2004, 40, 2017-2023.	5.4	44
28	Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability. Polymer Degradation and Stability, 2012, 97, 2037-2051.	5.8	43
29	Development of biodegradable polyurethane and bioactive glass nanoparticles scaffolds for bone tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1387-1396.	3.4	43
30	Papain wound dressings obtained from poly(vinyl alcohol)/calcium alginate blends as new pharmaceutical dosage form: Preparation and preliminary evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 11-23.	4.3	43
31	Local Drug Delivery System: Inhibition of Inflammatory Angiogenesis in a Murine Sponge Model by Dexamethasone-Loaded Polyurethane Implants. Journal of Pharmaceutical Sciences, 2011, 100, 2886-2895.	3.3	42
32	Preparation of hybrid biomaterials for bone tissue engineering. Materials Research, 2007, 10, 21-26.	1.3	41
33	Effect of the incorporation of a novel natural inorganic short fiber on the properties of polyurethane composites. Polymer Testing, 2005, 24, 819-824.	4.8	40
34	Differentiation of human adipose-derived stem cells seeded on mineralized electrospun co-axial poly(ε-caprolactone) (PCL)/gelatin nanofibers. Journal of Materials Science: Materials in Medicine, 2014, 25, 1137-1148.	3.6	40
35	Influence of the power density on the kinetics of photopolymerization and properties of dental composites. , 2005, 72B, 393-400.		39
36	Tailoring the morphology and properties of waterborne polyurethanes by the procedure of cellulose nanocrystal incorporation. European Polymer Journal, 2013, 49, 3761-3769.	5.4	39

#	Article	IF	CITATIONS
37	Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite. Journal of Drug Targeting, 2009, 17, 374-383.	4.4	37
38	The morphology and phase mixing studies on poly(ester–urethane) during shape memory cycle. Journal of Materials Science, 2010, 45, 511-522.	3.7	37
39	Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris. Journal of Nanoscience and Nanotechnology, 2015, 15, 792-799.	0.9	37
40	Ocular biocompatibility of dexamethasone acetate loaded poly(É>-caprolactone) nanofibers. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 20-30.	4.3	36
41	Novel sol-gel bioactive fibers. Journal of Biomedical Materials Research Part B, 2001, 55, 460-467.	3.1	35
42	Study of the Morphology Exhibited by Linear Segmented Polyurethanes. Macromolecular Symposia, 2011, 299-300, 190-198.	0.7	32
43	Processing, properties, andin vitro bioactivity of polysulfone-bioactive glass composites. Journal of Biomedical Materials Research - Part A, 2007, 80A, 565-580.	4.0	30
44	Structural analysis on photopolymerized dental resins containing nanocomponents. Journal of Materials Science, 2007, 42, 3883-3893.	3.7	30
45	Study of the behavior of polyester concretes containing ionomers as curing agents. Journal of Applied Polymer Science, 2008, 108, 2682-2690.	2.6	30
46	Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites. Revista Brasileira De Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, 2001, 23, 1-8.	0.1	30
47	Biodegradable core-shell electrospun nanofibers containing bevacizumab to treat age-related macular degeneration. Journal of Materials Science: Materials in Medicine, 2018, 29, 173.	3.6	29
48	Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol–gel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 447, 77-82.	5.6	27
49	Anti-Inflammatory Effect of Dexamethasone Controlled Released From Anterior Suprachoroidal Polyurethane Implants on Endotoxin-Induced Uveitis in Rats. , 2016, 57, 1671.		26
50	Montmorillonite Clay-Based Polyurethane Nanocomposite As Local Triamcinolone Acetonide Delivery System. Journal of Nanomaterials, 2011, 2011, 1-11.	2.7	25
51	Effect of the crystallization of bioactive glass reinforcing agents on the mechanical properties of polymer composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 372, 245-251.	5.6	24
52	Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth. Journal of Materials Science: Materials in Medicine, 2013, 24, 1309-1317.	3.6	23
53	Electrospun poly(ε-caprolactone) matrices containing silver sulfadiazine complexed with β-cyclodextrin as a new pharmaceutical dosage form to wound healing: preliminary physicochemical and biological evaluation. Journal of Materials Science: Materials in Medicine, 2018, 29, 67.	3.6	23
54	Evaluation of the interactions between collagen and the surface of a bioactive glass during <i>in vitro</i> test. Journal of Biomedical Materials Research - Part A, 2009, 90A, 114-120.	4.0	22

#	Article	IF	CITATIONS
55	Obtenção de compósitos de resÃduos de ardósia e polipropileno. Polimeros, 2007, 17, 98-103.	0.7	21
56	Effect of the macromolecular architecture of biodegradable polyurethanes on the controlled delivery of ocular drugs. Journal of Materials Science: Materials in Medicine, 2009, 20, 481-487.	3.6	21
57	Amphotericin B-Loaded Poly(lactic-co-glycolic acid) Nanofibers: An Alternative Therapy Scheme for Local Treatment of Vulvovaginal Candidiasis. Journal of Pharmaceutical Sciences, 2018, 107, 2674-2685.	3.3	21
58	Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 529-535.	3.6	20
59	Design of prolonged release tablets using new solid acrylic excipients for direct compression. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 664-673.	4.3	20
60	The potential of bamboo in the design of polymer composites. Materials Research, 2012, 15, 639-644.	1.3	20
61	Effect of light intensity and irradiation time on the polymerization process of a dental composite resin. Materials Research, 2004, 7, 313-318.	1.3	20
62	In situ evaluation of structural changes in poly(ester-urethanes) during shape-memory cycles. Polymer, 2010, 51, 1744-1751.	3.8	18
63	Effect of Long-Term In Vitro Testing on the Properties of Bioactive Glassâ^'Polysulfone Composites. Biomacromolecules, 2010, 11, 657-665.	5.4	18
64	Polyurethanes as Supports for Human Retinal Pigment Epithelium Cell Growth. International Journal of Artificial Organs, 2011, 34, 198-209.	1.4	18
65	Viabilidade celular de nanofibras de polÃmeros biodegradáveis e seus nanocompósitos com argila montmorilonita. Polimeros, 2012, 22, 34-41.	0.7	18
66	Synthesis and electromechanical actuation of a temperature, pH, and electrically responsive hydrogel. Journal of Polymer Research, 2014, 21, 1.	2.4	18
67	Recycled collagen films as biomaterials for controlled drug delivery. New Journal of Chemistry, 2016, 40, 8502-8510.	2.8	18
68	Comparative study of HDPE composites reinforced with microtalc and nanotalcs: high performance filler for improving ductility at low concentration levels. Journal of Materials Research and Technology, 2020, 9, 16387-16398.	5.8	18
69	Nanocompósitos derivados de dispersões aquosas de poliuretano e argila: influência da argila na morfologia e propriedades mecânicas. Polimeros, 2007, 17, 339-345.	0.7	17
70	Controlled release of triamcinolone acetonide from polyurethane implantable devices: application for inhibition of inflammatory-angiogenesis. Journal of Materials Science: Materials in Medicine, 2012, 23, 1431-1445.	3.6	17
71	One-step process for the preparation of fast-response soft actuators based on electrospun hybrid hydrogel nanofibers obtained by reactive electrospinning with in situ synthesis of conjugated polymers. Polymer, 2020, 200, 122590.	3.8	17
72	Improvement of the thermal properties of poly(3â€hydroxybutyrate) (PHB) by low molecular weight polypropylene glycol (LMWPPG) addition. Journal of Applied Polymer Science, 2013, 128, 3019-3025.	2.6	16

#	Article	IF	CITATIONS
73	The Effect of Light-curing Access and Different Resin Cements on Apical Bond Strength of Fiber Posts. Operative Dentistry, 2014, 39, e93-e100.	1.2	16
74	Polyurethane foams containing residues of petroleum industry catalysts as recoverable pH-sensitive sorbents for aqueous pesticides. Journal of Hazardous Materials, 2018, 346, 285-295.	12.4	15
75	Evaluation of the interactions between polymeric chains and surfaces with different structures performed by an atomic force microscope. Materials Research, 1998, 1, 19-28.	1.3	14
76	Influence of Bentonite Type in Waterborne Polyurethane Nanocomposite Mechanical Properties. Macromolecular Symposia, 2006, 245-246, 330-336.	0.7	14
77	Control of the Hydrophilic/Hydrophobic Behavior of Biodegradable Natural Polymers by Decorating Surfaces with Nano―and Micro omponents. Advances in Polymer Technology, 2018, 37, 654-661.	1.7	14
78	Toughening brittle polymers with shape memory polymers. Polymer, 2018, 135, 30-38.	3.8	14
79	Using the Nanostructure of Segmented Polyurethanes as a Template in the Fabrication of Nanocomposites. Macromolecules, 2005, 38, 4058-4060.	4.8	13
80	Toughening high density polyethylene submitted to extreme ambient temperatures. Journal of Polymer Research, 2017, 24, 1.	2.4	13
81	Title is missing!. Adsorption, 2001, 7, 105-116.	3.0	12
82	Attachment of inorganic moieties onto aliphatic polyurethanes. Materials Research, 2007, 10, 119-125.	1.3	12
83	Multi-drug hybrid delivery systems with distinct release profiles based on gelatin/collagen containing vesicles derived from block copolymers. International Journal of Biological Macromolecules, 2019, 139, 967-974.	7.5	12
84	Annatto-colored Poly(3-hydroxybutyrate): A Comprehensive Study on Photodegradation. Journal of Polymers and the Environment, 2018, 26, 1169-1178.	5.0	12
85	Characterization of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne. Powder Diffraction, 2008, 23, S30-S35.	0.2	11
86	Effect of the degree of clay delamination on the phase morphology, surface chemical aspects, and properties of hydrolyzable polyurethanes for periodontal regeneration. Journal of Applied Polymer Science, 2009, 114, 254-263.	2.6	11
87	In vivo tests of a novel wound dressing based on biomaterials with tissue adhesion controlled through external stimuli. Journal of Materials Science: Materials in Medicine, 2011, 22, 1357-1364.	3.6	11
88	Porcelain tile surface modification with isocyanate coupling agent: interactions between EVA modified mortar and silane improving adherence. Surface and Interface Analysis, 2011, 43, 738-743.	1.8	11
89	Bioactive Glass Nanoparticles-Loaded Poly(É›-caprolactone) Nanofiber as Substrate for ARPE-19 Cells. Journal of Nanomaterials, 2016, 2016, 1-12.	2.7	11
90	AFM Study on the Interactions Across Interfaces Containing Attached Polymer Chains. Macromolecular Materials and Engineering, 2006, 291, 377-386.	3.6	10

#	Article	IF	CITATIONS
91	Shapeâ€memory anchoring system for bladder sensors. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 369-375.	3.4	10
92	Improved Cytotoxic Effect of Doxorubicin by Its Combination with Sclareol in Solid Lipid Nanoparticle Suspension. Journal of Nanoscience and Nanotechnology, 2018, 18, 5609-5616.	0.9	10
93	Ion Pair Strategy in Solid Lipid Nanoparticles: a Targeted Approach to Improve Epidermal Targeting with Controlled Adapalene Release, Resulting Reduced Skin Irritation. Pharmaceutical Research, 2020, 37, 148.	3.5	10
94	Biocompatible and fluorescent polycaprolactone/silk electrospun nanofiber yarns loaded with carbon quantum dots for biotextiles. Polymers for Advanced Technologies, 2021, 32, 87-96.	3.2	10
95	Elaboration and Characterization of Coaxial Electrospun Poly(εâ€Caprolactone)/Gelatin Nanofibers for Biomedical Applications. Advances in Polymer Technology, 2014, 33, .	1.7	9
96	Compósitos Bioativos Obtidos a Partir da Inserção de Vidro Bioativo em Matriz de Poli(Metacrilato de) Tj ETG	Qq0,00 rg	BT /Overlock
97	Thermal welding of biological tissues derived from porcine aorta for manufacturing bioprosthetic cardiac valves. Biotechnology Letters, 2011, 33, 1699-1703.	2.2	8
98	Bio-Based Polyurethane Foams with Enriched Surfaces of Petroleum Catalyst Residues as Adsorbents of Organic Pollutants in Aqueous Solutions. Journal of Polymers and the Environment, 2020, 28, 2511-2522.	5.0	8
99	In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase. Journal of the Brazilian Chemical Society, 2000, 11, 78-85.	0.6	7
100	Surface evaluation of cardiac angiographic catheters after simulated use and reprocessing. Applied Surface Science, 2009, 256, 1419-1425.	6.1	7
101	Improved selfâ€healing properties of collagen using polyurethane microcapsules containing reactive diisocyanate. Polymer International, 2016, 65, 721-727.	3.1	7
102	Preparation of chitin nanofibers (whiskers) and their application as property-recovery agents in re-processed polypropylene. Polymer Bulletin, 2016, 73, 661-675.	3.3	7
103	Self-crosslinkable complexes based on poly(ethylene glycol) (PEG), poly(itaconic acid) (PIA) and N-methylol acrylamide (NMA) as pharmaceutical hydrophilic matrices. Polymer Bulletin, 2016, 73, 75-95.	3.3	7
104	Effect of incorporation of Halloysite nanotubes on the structure and properties of low-density polyethylene/thermoplastic starch blend. Journal of Polymer Research, 2020, 27, 1.	2.4	7
105	Proliferation of human mesenchymal stem cells derived from adipose tissue on polyurethanes with tunable biodegradability. Polimeros, 2010, 20, 280-286.	0.7	6
106	Polyurethane membranes with tunable surface properties for biomedical applications. Journal of Applied Polymer Science, 2011, 121, 3501-3508.	2.6	6
107	Acrylic polymers derived from high solid emulsions as excipients to pharmaceutical applications: synthesis and characterization. Polymer Bulletin, 2012, 68, 931-948.	3.3	6
108	External stimulusâ€responsive interfaces in polymer nanocomposites. Polymer Composites, 2016, 37, 1342-1349.	4.6	6

#	Article	IF	CITATIONS
109	Influence of aqueous dispersions in place of organic solvents during the synthesis of shape memory polyurethanes on their structure and properties. Polymer Engineering and Science, 2017, 57, 432-440.	3.1	6
110	Influence of porosity of low-density polyethylene media on the maturation process of biofilters used in recirculating aquaculture systems. Aquaculture International, 2018, 26, 1035-1049.	2.2	6
111	Prodegradant effect of titanium dioxide nanoparticulates on polypropylene–polyhydroxybutyrate blends. Journal of Applied Polymer Science, 2018, 135, 46636.	2.6	6
112	Selfâ€healing polymer blend based on PETG and EMAA. Journal of Applied Polymer Science, 2021, 138, 50148.	2.6	6
113	Super ductility in HDPE/EVA blends triggered by synthetic amorphous nanotalc. Journal of Polymer Research, 2021, 28, 1.	2.4	6
114	Efeito da incorporação de nanopartâulas de TiO2 na estrutura e propriedades de blendas de polipropileno e poli(hidroxibutirato) submetidas a testes de envelhecimento acelerado. Polimeros, 2014, 24, 395-401.	0.7	5
115	Nanostructured oxyhydroxide niobium (NbO ₂ OH) as UV radiation protector for polypropylene. RSC Advances, 2016, 6, 5040-5048.	3.6	5
116	Positively-charged electrosprayed nanoparticles based on biodegradable polymers containing amphotericin B for the treatment of leishmaniasis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1189-1202.	3.4	5
117	From brittleâ€toâ€ductile fracture of polymer composites: The incorporation of energy dissipation mechanisms by carbon nanotubesâ€based multilayered interface. Journal of Applied Polymer Science, 2020, 137, 49348.	2.6	5
118	Nanostructured lipid carriers enhances the safety profile of tretinoin: <i>in vitro</i> and healthy human volunteers' studies. Nanomedicine, 2021, 16, 1391-1409.	3.3	5
119	Biomoleculeâ€based hydrogels containing electrospun fiber mats with enhanced mechanical properties and biological activity. Journal of Applied Polymer Science, 2022, 139, .	2.6	5
120	Bioactive composites with designed interphases based on hyperbranched macromers. Journal of Applied Polymer Science, 2006, 99, 1153-1166.	2.6	4
121	Antiangiogenic activity of a bevacizumab-loaded polyurethane device in animal neovascularization models. Journal Francais D'Ophtalmologie, 2017, 40, 202-208.	0.4	4
122	Layer-by-Layer technique employed to construct multitask interfaces in polymer composites. Polimeros, 2017, 27, 330-338.	0.7	4
123	Preparation and characterization of xerogels obtained from aluminum isopropoxide. , 1994, 2288, 733.		3
124	Title is missing!. Journal of Sol-Gel Science and Technology, 1997, 9, 239-249.	2.4	3
125	Engineered hyperstructures based on attaching macromers onto polymers. European Polymer Journal, 2008, 44, 3969-3980.	5.4	3
126	N-acryloxysuccinimide: Synthesis, characterization, and incorporation in dental adhesives. International Journal of Adhesion and Adhesives, 2011, 31, 767-774.	2.9	3

#	Article	IF	CITATIONS
127	Surfaceâ€pegylated chitin whiskers as an effective additive to enhance the mechanical properties of recycled ABS. Journal of Applied Polymer Science, 2015, 132, .	2.6	3
128	A facile and low-cost route for producing a flexible hydrogel–PANI electrolyte/counter electrode applicable in dye-sensitized solar cells (DSSC). SN Applied Sciences, 2019, 1, 1.	2.9	3
129	Morphology Evolution during Stretching Investigated by <i>in situ</i> SAXS of Hybrids with Ceramic Nanoparticles Selectively Incorporated into a Highly Available Block Copolymer as a Model Material for Wearables. ACS Applied Polymer Materials, 2021, 3, 1583-1594.	4.4	3
130	Correlation between morphological properties and ionic conductivity in an electrolyte based on poly(vinylidene fluoride) and poly (2-hydroxyethyl methacrylate). Materials Research, 2014, 17, 115-120.	1.3	2
131	Design and Characterization of Biocomposites from Poly(lactic acid) (PLA) and Buriti Petiole (<i>Mauritia flexuosa</i>). Journal of Renewable Materials, 2017, 5, 251-257.	2.2	2
132	Direct use of Brazilian banknotes residue for the production of reinforced composites based on lowâ€density polyethylene. Journal of Applied Polymer Science, 2019, 136, 48232.	2.6	2
133	Development and application of a miniaturized tensile testing device for in situ synchrotron microtomography experiments. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	2
134	3D printability of highly ductile poly(ethylene glycolâ€coâ€cyclohexaneâ€1,4â€dimethanol terephthalate) â€EMAA blends. Polymer Engineering and Science, 2021, 61, 1695-1705.	3.1	2
135	Physicochemical characterization of the gelatin/polycaprolactone nanofibers loaded with diclofenac potassium for topical use aiming potential anti-inflammatory action. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-16.	3.4	2
136	REUSE OF COLLAGEN AND HYDROXYAPATITE FROM THE WASTE PROCESSING OF FISH TO PRODUCE POLYETHYLENE COMPOSITES. Quimica Nova, 2020, , .	0.3	2
137	The effect of the incorporation of polystyreneâ€based chain extenders on the properties of the shape memory polyurethanes. Journal of Applied Polymer Science, 2017, 134, .	2.6	1
138	Aluminosilicate nanofibers with ordered pores derived from block copolymer electrospun nanofibers. Journal of Applied Polymer Science, 2018, 135, 46868.	2.6	1
139	Production of Nanostructured Aluminosilicate Fibers from Poly(ethylene glycol) Based Electrospun Fibers. Macromolecular Symposia, 2019, 383, 1800036.	0.7	1
140	Polymeric film containing pomegranate peel extract as a promising tool for the treatment of candidiasis. Natural Product Research, 2022, , 1-5.	1.8	1
141	Spiramyin-loaded PLGA implants for the treatment of ocular toxoplasmosis: development, characterization, biocompatibility, and anti-toxoplasma activity. Die Pharmazie, 2021, 76, 68-76.	0.5	1
142	Controlling the phase stability of polymer blends through the introduction of impenetrable interfaces. Journal of Applied Polymer Science, 2003, 87, 1619-1627.	2.6	0
143	Interactions between a collagen-binding adhesive and dental substrate. Journal of Adhesion Science and Technology, 2014, 28, 2393-2401.	2.6	0
144	Surface modification of recording electrodes. Polimeros, 2013, 23, 712-717.	0.7	0