List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5287739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic structure and electrical properties of interfaces between metals and ?-conjugated molecular films. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2529-2548.	2.1	771
2	Organic Electronic Devices and Their Functional Interfaces. ChemPhysChem, 2007, 8, 1438-1455.	2.1	724
3	The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy and Environmental Science, 2019, 12, 2778-2788.	30.8	570
4	Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nature Materials, 2008, 7, 326-332.	27.5	564
5	Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. Accounts of Chemical Research, 2016, 49, 370-378.	15.6	549
6	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	30.8	536
7	Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Applied Physics Letters, 2003, 82, 70-72.	3.3	481
8	Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy, 2017, 2, 972-979.	39.5	445
9	Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 14932-14944.	13.7	361
10	Surface Termination Dependent Work Function and Electronic Properties of Ti ₃ C ₂ T _{<i>x</i>} MXene. Chemistry of Materials, 2019, 31, 6590-6597.	6.7	359
11	Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nature Communications, 2014, 5, 4174.	12.8	322
12	Charge-transfer crystallites as molecular electrical dopants. Nature Communications, 2015, 6, 8560.	12.8	317
13	Influence of Aggregation on the Performance of Allâ€Polymer Solar Cells Containing Lowâ€Bandgap Naphthalenediimide Copolymers. Advanced Energy Materials, 2012, 2, 369-380.	19.5	316
14	Bonding Self-Assembled, Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon. Journal of the American Chemical Society, 2003, 125, 16074-16080.	13.7	310
15	Self-Assembly and Bonding of Alkanephosphonic Acids on the Native Oxide Surface of Titanium. Langmuir, 2001, 17, 5736-5738.	3.5	266
16	Optimized Hole Injection with Strong Electron Acceptors at Organic-Metal Interfaces. Physical Review Letters, 2005, 95, 237601.	7.8	248
17	Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nature Communications, 2013, 4, 1588.	12.8	240
18	PTCDA on Au(111), Ag(111) and Cu(111): Correlation of interface charge transfer to bonding distance. Organic Electronics, 2008, 9, 111-118.	2.6	220

#	Article	IF	CITATIONS
19	Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nature Chemistry, 2012, 4, 675-679.	13.6	217
20	Reduced Interfaceâ€Mediated Recombination for High Openâ€Circuit Voltages in CH ₃ NH ₃ PbI ₃ Solar Cells. Advanced Materials, 2017, 29, 1700159.	21.0	210
21	Controlling Electron and Hole Charge Injection in Ambipolar Organic Fieldâ€Effect Transistors by Selfâ€Assembled Monolayers. Advanced Functional Materials, 2009, 19, 2407-2415.	14.9	209
22	Impact of Bidirectional Charge Transfer and Molecular Distortions on the Electronic Structure of a Metal-Organic Interface. Physical Review Letters, 2007, 99, 256801.	7.8	206
23	Pentacene ultrathin film formation on reduced and oxidized Si surfaces. Physical Review B, 2003, 67, .	3.2	204
24	Evidence for Temperature-Dependent Electron Band Dispersion in Pentacene. Physical Review Letters, 2006, 96, 156803.	7.8	197
25	Design of Organic Semiconductors from Molecular Electrostaticsâ€. Chemistry of Materials, 2011, 23, 359-377.	6.7	193
26	Band Bending in Conjugated Polymer Layers. Physical Review Letters, 2011, 106, 216402.	7.8	188
27	Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nature Chemistry, 2013, 5, 187-194.	13.6	187
28	Influence of Charge Transport Layers on Open-Circuit Voltage and Hysteresis in Perovskite Solar Cells. Joule, 2018, 2, 788-798.	24.0	187
29	Doping of Organic Semiconductors: Impact of Dopant Strength and Electronic Coupling. Angewandte Chemie - International Edition, 2013, 52, 7751-7755.	13.8	186
30	Advanced Surface Modification of Indium Tin Oxide for Improved Charge Injection in Organic Devices. Journal of the American Chemical Society, 2005, 127, 10058-10062.	13.7	179
31	Intermolecular Hybridization Governs Molecular Electrical Doping. Physical Review Letters, 2012, 108, 035502.	7.8	178
32	High Fill Factor and Open Circuit Voltage in Organic Photovoltaic Cells with Diindenoperylene as Donor Material. Advanced Functional Materials, 2010, 20, 4295-4303.	14.9	175
33	Dynamic Scaling, Island Size Distribution, and Morphology in the Aggregation Regime of Submonolayer Pentacene Films. Physical Review Letters, 2003, 91, 136102.	7.8	172
34	Doping Approaches for Organic Semiconductors. Chemical Reviews, 2022, 122, 4420-4492.	47.7	153
35	Localized Charge Transfer in a Molecularly Doped Conducting Polymer. Advanced Materials, 2007, 19, 3257-3260.	21.0	152
36	Adsorption-Induced Intramolecular Dipole: Correlating Molecular Conformation and Interface Electronic Structure. Journal of the American Chemical Society, 2008, 130, 7300-7304.	13.7	152

#	Article	IF	CITATIONS
37	Tuning the Ionization Energy of Organic Semiconductor Films: The Role of Intramolecular Polar Bonds. Journal of the American Chemical Society, 2008, 130, 12870-12871.	13.7	152
38	Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se ₂ Surfaces – Reason for Performance Leap?. ACS Applied Materials & Interfaces, 2015, 7, 27414-27420.	8.0	147
39	Energy levels at interfaces between metals and conjugated organic molecules. Journal of Physics Condensed Matter, 2008, 20, 184008.	1.8	145
40	Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nature Materials, 2019, 18, 1327-1334.	27.5	144
41	Direct determination of monolayer MoS ₂ and WSe ₂ exciton binding energies on insulating and metallic substrates. 2D Materials, 2018, 5, 025003.	4.4	142
42	The Effect of Fluorination on Pentacene/Gold Interface Energetics and Charge Reorganization Energy. Advanced Materials, 2007, 19, 112-116.	21.0	139
43	Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. Nature Materials, 2017, 16, 1209-1215.	27.5	139
44	Impact of White Light Illumination on the Electronic and Chemical Structures of Mixed Halide and Single Crystal Perovskites. Advanced Optical Materials, 2017, 5, 1700139.	7.3	136
45	Chemical Vapor Deposition of N-Doped Graphene and Carbon Films: The Role of Precursors and Gas Phase. ACS Nano, 2014, 8, 3337-3346.	14.6	133
46	Unraveling the Lightâ€Induced Degradation Mechanisms of CH ₃ NH ₃ Pbl ₃ Perovskite Films. Advanced Electronic Materials, 2017, 3, 1700158.	5.1	130
47	Ordersâ€ofâ€Magnitude Reduction of the Contact Resistance in Shortâ€Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Auâ€Electrodes. Advanced Functional Materials, 2007, 17, 2687-2692.	14.9	117
48	Interplay between morphology, structure, and electronic properties at diindenoperylene-gold interfaces. Physical Review B, 2003, 68, .	3.2	116
49	Work Function Independent Hole-Injection Barriers Between Pentacene and Conducting Polymers. Advanced Materials, 2005, 17, 330-335.	21.0	116
50	F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals. Physical Review B, 2009, 79, .	3.2	116
51	Influence of water on the work function of conducting poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Applied Physics Letters, 2007, 90, 043512.	3.3	115
52	Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells. ACS Nano, 2020, 14, 1445-1456.	14.6	115
53	Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2728-2736.	17.4	114
54	Core, Shell, and Surface-Optimized Dendrimers for Blue Light-Emitting Diodes. Journal of the American Chemical Society, 2011, 133, 1301-1303.	13.7	111

#	Article	IF	CITATIONS
55	Energy level alignment and morphology of interfaces between molecular and polymeric organic semiconductors. Organic Electronics, 2007, 8, 606-614.	2.6	110
56	Controlling the work function of ZnO and the energy-level alignment at the interface to organic semiconductors with a molecular electron acceptor. Physical Review B, 2013, 87, .	3.2	109
57	Epitaxial Growth of π-Stacked Perfluoropentacene on Graphene-Coated Quartz. ACS Nano, 2012, 6, 10874-10883.	14.6	108
58	Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules. Nanotechnology, 2009, 20, 434007.	2.6	103
59	Energy-level alignment at organic heterointerfaces. Science Advances, 2015, 1, e1501127.	10.3	103
60	Growth of Nb-Doped Monolayer WS ₂ by Liquid-Phase Precursor Mixing. ACS Nano, 2019, 13, 10768-10775.	14.6	102
61	UVâ^•ozone treated Au for air-stable, low hole injection barrier electrodes in organic electronics. Journal of Applied Physics, 2006, 100, 053701.	2.5	99
62	Substrate-dependent bonding distances of PTCDA: A comparative x-ray standing-wave study on Cu(111) and Ag(111). Physical Review B, 2007, 75, .	3.2	99
63	Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning. Nature Communications, 2015, 6, 6754.	12.8	99
64	The effect of oxygen exposure on pentacene electronic structure. European Physical Journal E, 2005, 17, 339-343.	1.6	98
65	Tin-assisted heteroepitaxial PLD-growth of \hat{I}^e -Ga2O3 thin films with high crystalline quality. APL Materials, 2019, 7, .	5.1	98
66	Structural and electronic properties of pentacene-fullerene heterojunctions. Journal of Applied Physics, 2008, 104, .	2.5	97
67	Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current–voltage characteristics. Applied Physics Letters, 2003, 82, 2281-2283.	3.3	96
68	Understanding Performance Limiting Interfacial Recombination in <i>pin</i> Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	95
69	Electrode-molecular semiconductor contacts: Work-function-dependent hole injection barriers versus Fermi-level pinning. Applied Physics Letters, 2006, 89, 162107.	3.3	94
70	Harnessing the Liquidâ€Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach. Angewandte Chemie - International Edition, 2014, 53, 10355-10361.	13.8	92
71	Charge-Transfer Localization in Molecularly Doped Thiophene-Based Donor Polymers. Journal of Physical Chemistry Letters, 2010, 1, 2037-2041.	4.6	91
72	Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces. ACS Applied Materials & Interfaces, 2017, 9, 41546-41552.	8.0	89

#	Article	IF	CITATIONS
73	Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21681-21687.	8.0	89
74	Correlation between interface energetics and open circuit voltage in organic photovoltaic cells. Applied Physics Letters, 2012, 101, 233301.	3.3	88
75	Identification of different origins for s-shaped current voltage characteristics in planar heterojunction organic solar cells. Journal of Applied Physics, 2012, 111, .	2.5	86
76	Structural Order in Perfluoropentacene Thin Films and Heterostructures with Pentacene. Langmuir, 2008, 24, 7294-7298.	3.5	85
77	Bandâ€Bending in Organic Semiconductors: the Role of Alkaliâ€Halide Interlayers. Advanced Materials, 2014, 26, 925-930.	21.0	85
78	Dislocation arrangements in pentacene thin films. Physical Review B, 2004, 70, .	3.2	84
79	Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains. Journal of the American Chemical Society, 2015, 137, 7678-7685.	13.7	82
80	Molecular orientation dependent energy levels at interfaces with pentacene and pentacenequinone. Organic Electronics, 2006, 7, 537-545.	2.6	81
81	Growth and preferred crystallographic orientation of hexaphenyl thin films. Thin Solid Films, 1997, 305, 232-242.	1.8	79
82	Controlling the Work Function of Indium Tin Oxide:  Differentiating Dipolar from Local Surface Effects. Journal of the American Chemical Society, 2002, 124, 3192-3193.	13.7	79
83	Role of the effective mass and interfacial dipoles on exciton dissociation in organic donor-acceptor solar cells. Physical Review B, 2013, 87, .	3.2	79
84	<i>V</i> _{oc} from a Morphology Point of View: the Influence of Molecular Orientation on the Open Circuit Voltage of Organic Planar Heterojunction Solar Cells. Journal of Physical Chemistry C, 2014, 118, 26462-26470.	3.1	78
85	Constructing the Electronic Structure of CH ₃ NH ₃ PbI ₃ and CH ₃ NH ₃ PbBr ₃ Perovskite Thin Films from Single-Crystal Band Structure Measurements. Journal of Physical Chemistry Letters, 2019, 10, 601-609.	4.6	78
86	Structure, morphology, and optical properties of highly ordered films ofpara-sexiphenyl. Physical Review B, 2000, 61, 16538-16549.	3.2	77
87	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy and Environmental Science, 2021, 14, 4508-4522.	30.8	76
88	Controlling the Early Stages of Pentacene Growth by Supersonic Molecular Beam Deposition. Physical Review Letters, 2007, 98, 076601.	7.8	75
89	Gold work function reduction by 2.2eV with an air-stable molecular donor layer. Applied Physics Letters, 2008, 93,	3.3	75
90	Probing the energy levels in hole-doped molecular semiconductors. Materials Horizons, 2015, 2, 427-433.	12.2	75

#	Article	IF	CITATIONS
91	Investigating Molecular Charge Transfer Complexes with a Low Temperature Scanning Tunneling Microscope. Physical Review Letters, 2008, 100, 126102.	7.8	73
92	Influence of molecular conformation on organic/metal interface energetics. Chemical Physics Letters, 2005, 413, 390-395.	2.6	72
93	Role of charge transfer, dipole-dipole interactions, and electrostatics in Fermi-level pinning at a molecular heterojunction on a metal surface. Physical Review B, 2013, 87, .	3.2	70
94	Space-Charge Transfer in Hybrid Inorganic-Organic Systems. Physical Review Letters, 2013, 111, 226802.	7.8	68
95	Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy and Environmental Science, 2022, 15, 714-726.	30.8	68
96	Surface Modification of ZnO(0001)–Zn with Phosphonate-Based Self-Assembled Monolayers: Binding Modes, Orientation, and Work Function. Chemistry of Materials, 2014, 26, 5042-5050.	6.7	66
97	Influence of intramolecular polar bonds on interface energetics in perfluoro-pentacene on Ag(111). Physical Review B, 2010, 81, .	3.2	65
98	Intrinsic Surface Dipoles Control the Energy Levels of Conjugated Polymers. Advanced Functional Materials, 2009, 19, 3874-3879.	14.9	64
99	Crystallisation kinetics in thin films of dihexyl-terthiophene: the appearance of polymorphic phases. RSC Advances, 2012, 2, 4404.	3.6	64
100	Reliable Work Function Determination of Multicomponent Surfaces and Interfaces: The Role of Electrostatic Potentials in Ultraviolet Photoelectron Spectroscopy. Advanced Materials Interfaces, 2017, 4, 1700324.	3.7	61
101	Physisorption-like Interaction at the Interfaces Formed by Pentacene and Samarium. Journal of Physical Chemistry B, 2002, 106, 4192-4196.	2.6	60
102	Synergic Exfoliation of Graphene with Organic Molecules and Inorganic Ions for the Electrochemical Production of Flexible Electrodes. ChemPlusChem, 2014, 79, 439-446.	2.8	60
103	Directional Charge Transport in Layered Twoâ€Dimensional Triazineâ€Based Graphitic Carbon Nitride. Angewandte Chemie - International Edition, 2019, 58, 9394-9398.	13.8	60
104	Electronic structure of interfaces with conjugated organic materials. Physica Status Solidi - Rapid Research Letters, 2012, 6, 277-293.	2.4	59
105	Synthesis of Nickel Phosphide Electrocatalysts from Hybrid Metal Phosphonates. ACS Applied Materials & Interfaces, 2017, 9, 14013-14022.	8.0	59
106	Electronic Properties of a 1D Intrinsic/p-Doped Heterojunction in a 2D Transition Metal Dichalcogenide Semiconductor. ACS Nano, 2017, 11, 9128-9135.	14.6	58
107	Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds. Applied Physics Letters, 2009, 94,	3.3	57
108	Band-offset engineering in organic/inorganic semiconductor hybrid structures. Physical Chemistry Chemical Physics, 2010, 12, 11642.	2.8	57

#	Article	IF	CITATIONS
109	Lightâ€Modulation of the Charge Injection in a Polymer Thinâ€Film Transistor by Functionalizing the Electrodes with Bistable Photochromic Selfâ€Assembled Monolayers. Advanced Materials, 2016, 28, 6606-6611.	21.0	57
110	High open circuit voltages in pin-type perovskite solar cells through strontium addition. Sustainable Energy and Fuels, 2019, 3, 550-563.	4.9	57
111	Investigation of MoO <i>_x</i> /n‣i strong inversion layer interfaces via dopantâ€free heterocontact. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700107.	2.4	56
112	Density-Dependent Reorientation and Rehybridization of Chemisorbed Conjugated Molecules for Controlling Interface Electronic Structure. Physical Review Letters, 2010, 104, 246805.	7.8	55
113	Electronic structure of CoPc adsorbed on Ag(100): Evidence for molecule-substrate interaction mediated by Co 3 < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > < mml:mi > d < /mml:mi > < /mml:math > orbitals. Physical Review B, 2013, 87, .	3.2	54
114	Charge Separation at Molecular Donor–Acceptor Interfaces: Correlation Between Morphology and Solar Cell Performance. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1707-1717.	2.9	53
115	Tuning the hole injection barrier height at organic/metal interfaces with (sub-) monolayers of electron acceptor molecules. Applied Physics Letters, 2005, 87, 101905.	3.3	52
116	"Soft―Metallic Contact to Isolated C ₆₀ Molecules. Nano Letters, 2008, 8, 3825-3829.	9.1	50
117	Bright Blue Solution Processed Tripleâ€Layer Polymer Lightâ€Emitting Diodes Realized by Thermal Layer Stabilization and Orthogonal Solvents. Advanced Functional Materials, 2013, 23, 4897-4905.	14.9	50
118	Tuning the Work Function of Graphene-on-Quartz with a High Weight Molecular Acceptor. Journal of Physical Chemistry C, 2014, 118, 4784-4790.	3.1	50
119	Modulation of Surface Charge Transfer through Competing Long-Range Repulsive versus Short-Range Attractive Interactions. Journal of Physical Chemistry C, 2011, 115, 18640-18648.	3.1	49
120	Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 55-60.	1.7	49
121	Exploring the bonding of large hydrocarbons on noble metals: Diindoperylene on Cu(111), Ag(111), and Au(111). Physical Review B, 2013, 87, .	3.2	49
122	Epitaxial Growth of an Organic p–n Heterojunction: C ₆₀ on Single-Crystal Pentacene. ACS Applied Materials & Interfaces, 2016, 8, 13499-13505.	8.0	49
123	Bipolaron:  The Stable Charged Species in n-Doped p-Sexiphenyl. Journal of Physical Chemistry B, 2000, 104, 1434-1438.	2.6	48
124	Molecular chains and carpets of sexithiophenes onAu(111). Physical Review B, 2007, 76, .	3.2	48
125	Electronic and structural properties of graphene-based transparent and conductive thin film electrodes. Applied Physics A: Materials Science and Processing, 2009, 94, 1-4.	2.3	48
126	Site-Specific Geometric and Electronic Relaxations at Organic-Metal Interfaces. Physical Review Letters, 2010, 105, 046103.	7.8	48

#	Article	IF	CITATIONS
127	Copper sulfide nanoparticles as hole-transporting-material in a fully-inorganic blocking layers n-i-p perovskite solar cells: Application and working insights. Applied Surface Science, 2019, 478, 607-614.	6.1	48
128	Low ost TiS ₂ as Holeâ€Transport Material for Perovskite Solar Cells. Small Methods, 2017, 1, 1700250.	8.6	47
129	Alkali Salts as Interface Modifiers in nâ€iâ€p Hybrid Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900088.	5.8	47
130	Quantitative Analysis of Doping-Induced Polarons and Charge-Transfer Complexes of Poly(3-hexylthiophene) in Solution. Journal of Physical Chemistry B, 2020, 124, 7694-7708.	2.6	47
131	Insights into Charge Transfer at an Atomically Precise Nanocluster/Semiconductor Interface. Angewandte Chemie - International Edition, 2020, 59, 7748-7754.	13.8	47
132	Radiation induced degradation and surface charging of organic thin films in ultraviolet photoemission spectroscopy. Thin Solid Films, 2001, 391, 81-87.	1.8	46
133	Hybrid Supramolecular Naphthalene Diimideâ€ŧhiophene Structures and their Application in Polymer Electronics. Advanced Functional Materials, 2007, 17, 3715-3723.	14.9	46
134	Air-Stable n–i–p Planar Perovskite Solar Cells Using Nickel Oxide Nanocrystals as Sole Hole-Transporting Material. ACS Applied Energy Materials, 2019, 2, 4890-4899.	5.1	46
135	Grainâ€Boundary Evolution in a Pentacene Monolayer. Advanced Materials, 2008, 20, 3254-3257.	21.0	45
136	Interdiffusion of molecular acceptors through organic layers to metal substrates mimics doping-related energy level shifts. Applied Physics Letters, 2009, 95, 093305.	3.3	45
137	Electronic Properties of Organic-Based Interfaces. MRS Bulletin, 2010, 35, 417-421.	3.5	45
138	Low-onset organic blue light emitting devices obtained by better interface control. Applied Physics Letters, 1999, 74, 2909-2911.	3.3	44
139	Structure Solution of the 6,13-Pentacenequinone Surface-Induced Polymorph by Combining X-ray Diffraction Reciprocal-Space Mapping and Theoretical Structure Modeling. Crystal Growth and Design, 2011, 11, 600-606.	3.0	44
140	Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies. ACS Applied Materials & Interfaces, 2019, 11, 21578-21583.	8.0	44
141	Tuning hole-injection barriers at organic/metal interfaces exploiting the orientation of a molecular acceptor interlayer. Physical Review B, 2011, 84, .	3.2	43
142	Doping of C60(sub)monolayers by Fermi-level pinning induced electron transfer. Physical Review B, 2012, 86, .	3.2	43
143	Highly Efficient Colorâ€Stable Deepâ€Blue Multilayer PLEDs: Preventing PEDOT:PSSâ€Induced Interface Degradation. Advanced Materials, 2013, 25, 4420-4424	21.0	43
144	Charge transfer in and conductivity of molecularly doped thiopheneâ€based copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 58-63.	2.1	43

#	Article	IF	CITATIONS
145	The interaction of oxygen and ozone with pentacene. Surface Science, 2006, 600, 4004-4007.	1.9	41
146	Zn _{0.35} Co _{0.65} O – A Stable and Highly Active Oxygen Evolution Catalyst Formed by Zinc Leaching and Tetrahedral Coordinated Cobalt in Wurtzite Structure. Advanced Energy Materials, 2019, 9, 1900328.	19.5	41
147	Fermi level pinning induced electrostatic fields and band bending at organic heterojunctions. Applied Physics Letters, 2014, 105, .	3.3	40
148	Tuning the work function of GaN with organic molecular acceptors. Physical Review B, 2016, 93, .	3.2	40
149	Correlation of annealing time with crystal structure, composition, and electronic properties of CH ₃ NH ₃ Pbl _{3â°x} Cl _x mixed-halide perovskite films. Physical Chemistry Chemical Physics, 2017, 19, 828-836.	2.8	40
150	Electronic Properties of the Interfaces Between the Wide Bandgap Organic SemiconductorPara-Sexiphenyl and Samarium. Advanced Functional Materials, 2001, 11, 51-58.	14.9	39
151	The Impact of Local Work Function Variations on Fermi Level Pinning of Organic Semiconductors. Journal of Physical Chemistry C, 2013, 117, 22285-22289.	3.1	39
152	Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 3226-3232.	8.0	39
153	Orientation-Dependent Work-Function Modification Using Substituted Pyrene-Based Acceptors. Journal of Physical Chemistry C, 2017, 121, 24657-24668.	3.1	39
154	Demonstration of the key substrate-dependent charge transfer mechanisms between monolayer MoS2 and molecular dopants. Communications Physics, 2019, 2, .	5.3	38
155	Charge Transfer Absorption and Emission at ZnO/Organic Interfaces. Journal of Physical Chemistry Letters, 2015, 6, 500-504.	4.6	37
156	A Polymorph Crystal Structure of Hexaphenyl Observed in Thin Films. Crystal Research and Technology, 2001, 36, 47-54.	1.3	36
157	Effect of Water, Oxygen, and Air Exposure on CH ₃ NH ₃ Pbl _{3–} <i>_x</i> Cl <i>_x</i> Perovskite Surface Electronic Properties. Advanced Electronic Materials, 2018, 4, 1800307.	5.1	36
158	Weak Charge Transfer between an Acceptor Molecule and Metal Surfaces Enabling Organic/Metal Energy Level Tuning. Journal of Physical Chemistry B, 2006, 110, 21069-21072.	2.6	35
159	Ambipolar transport in transparent and flexible all-organic heterojunction field effect transistors at ambient conditions. Organic Electronics, 2008, 9, 191-197.	2.6	35
160	Color Tuning of Nanofibers by Periodic Organic–Organic Hetero-Epitaxy. ACS Nano, 2012, 6, 4629-4638.	14.6	35
161	The Effect of Gradual Fluorination on the Properties of F <i>_n</i> ZnPc Thin Films and F <i>_n</i> ZnPc/C ₆₀ Bilayer Photovoltaic Cells. Advanced Functional Materials, 2015, 25, 1565-1573.	14.9	35
162	Organic heterojunctions: Contact-induced molecular reorientation, interface states and charge re-distribution. Scientific Reports, 2016, 6, 21291.	3.3	35

#	Article	IF	CITATIONS
163	Unraveling the Microstructure of Molecularly Doped Poly(3-hexylthiophene) by Thermally Induced Dedoping. Journal of Physical Chemistry C, 2018, 122, 25893-25899.	3.1	35
164	Photoemission from Azobenzene Alkanethiol Self-Assembled Monolayers. Journal of Physical Chemistry B, 2003, 107, 7768-7775.	2.6	34
165	Phase separation in vacuum codeposited pentacene/6,13-pentacenequinone thin films. Physical Review B, 2007, 75, .	3.2	34
166	Tuning the Electronic Structure of Graphene by Molecular Dopants: Impact of the Substrate. ACS Applied Materials & Interfaces, 2015, 7, 19134-19144.	8.0	34
167	Impact of low 6,13-pentacenequinone concentration on pentacene thin film growth. Applied Physics Letters, 2007, 91, 051919.	3.3	33
168	Ultrathin polythiophene films on an intrinsically conducting polymer electrode: Charge transfer induced valence states and interface dipoles. Organic Electronics, 2011, 12, 916-922.	2.6	33
169	Full electronic structure across a polymer heterojunction solar cell. Journal of Materials Chemistry, 2012, 22, 4418.	6.7	33
170	Energy-Level Engineering at ZnO/Oligophenylene Interfaces with Phosphonate-Based Self-Assembled Monolayers. ACS Applied Materials & Interfaces, 2015, 7, 11900-11907.	8.0	33
171	Interface formation and electronic structure of α-sexithiophene on ZnO. Applied Physics Letters, 2008, 92, .	3.3	32
172	Photoinduced reversible changes in the electronic structure of photochromic diarylethene films. Applied Physics A: Materials Science and Processing, 2013, 113, 1-4.	2.3	32
173	Origin of mechanical strain sensitivity of pentacene thin-film transistors. Organic Electronics, 2013, 14, 1323-1329.	2.6	32
174	State-of-Matter-Dependent Charge-Transfer Interactions between Planar Molecules for Doping Applications. Chemistry of Materials, 2019, 31, 1237-1249.	6.7	32
175	An Organic Borate Salt with Superior <i>p</i> â€Đoping Capability for Organic Semiconductors. Advanced Science, 2020, 7, 2001322.	11.2	32
176	The optical signatures of molecular-doping induced polarons in poly(3-hexylthiophene-2,5-diyl): individual polymer chains <i>versus</i> aggregates. Journal of Materials Chemistry C, 2020, 8, 2870-2879.	5.5	32
177	Anisotropy in ordered sexithiophene thin films studied by angle-resolved photoemission using combined laser and synchrotron radiation. Applied Physics Letters, 2005, 87, 093501.	3.3	31
178	Phase-separation and mixing in thin films of co-deposited rod-like conjugated molecules. Journal of Materials Chemistry, 2010, 20, 4055.	6.7	31
179	Electric fields induced by energy level pinning at organic heterojunctions. Applied Physics Letters, 2011, 98, 123304.	3.3	31
180	The Impact of Disorder on the Energy Level Alignment at Molecular Donor–Acceptor Interfaces. Advanced Materials Interfaces, 2015, 2, 1500232.	3.7	31

#	Article	IF	CITATIONS
181	Continuous Tuning of Organic Transistor Operation from Enhancement to Depletion Mode. Advanced Materials, 2009, 21, 344-348.	21.0	30
182	Interpretation of valence band photoemission spectra at organic-metal interfaces. Physical Review B, 2013, 87, .	3.2	30
183	Modulation of the Work Function by the Atomic Structure of Strong Organic Electron Acceptors on H‧i(111). Advanced Electronic Materials, 2019, 5, 1800891.	5.1	30
184	Epitaxial <i>Ĵº</i> -(Al <i>x</i> Ga1â^' <i>x</i>)2O3 thin films and heterostructures grown by tin-assisted VCCS-PLD. APL Materials, 2019, 7, .	5.1	30
185	Excited-State Charge Transfer Enabling MoS ₂ /Phthalocyanine Photodetectors with Extended Spectral Sensitivity. Journal of Physical Chemistry C, 2020, 124, 2837-2843.	3.1	30
186	Optically induced electron transfer from conjugated organic molecules to charged metal clusters. Thin Solid Films, 2003, 441, 145-149.	1.8	29
187	Lack of thermodynamic equilibrium in conjugated organic molecular thin films. Physical Review B, 2003, 67, .	3.2	29
188	The role of poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) as a hole injection layer in a blue-emitting polymer light-emitting diode. Journal of Applied Physics, 2008, 104, .	2.5	29
189	Layer growth and desorption kinetics of a discoid molecular acceptor on Au(111). Chemical Physics Letters, 2009, 473, 321-325.	2.6	29
190	Impact of Fluorination on Initial Growth and Stability of Pentacene on Cu(111). Journal of Physical Chemistry C, 2012, 116, 7726-7734.	3.1	29
191	Influence of Oxygen Deficiency on the Rectifying Behavior of Transparent-Semiconducting-Oxide–Metal Interfaces. Physical Review Applied, 2018, 9, .	3.8	29
192	Direct Observation of Conductive Polymer Induced Inversion Layer in n‣i and Correlation to Solar Cell Performance. Advanced Functional Materials, 2020, 30, 1903440.	14.9	29
193	Electronic coupling in organic-inorganic semiconductor hybrid structures with type-II energy level alignment. Physical Review B, 2008, 77, .	3.2	28
194	Interrelation between Substrate Roughness and Thin-Film Structure of Functionalized Acenes on Graphite. Crystal Growth and Design, 2011, 11, 4996-5001.	3.0	28
195	Effective Work Function Reduction of Practical Electrodes Using an Organometallic Dimer. Advanced Functional Materials, 2016, 26, 2493-2502.	14.9	28
196	Energy level alignment at interfaces with pentacene: metals versus conducting polymers. Applied Surface Science, 2005, 244, 593-597.	6.1	27
197	Green polyfluorene-conducting polymer interfaces: Energy level alignment and device performance. Journal of Applied Physics, 2006, 100, 024512.	2.5	27
198	Layer Growth, Thermal Stability, and Desorption Behavior of Hexaaza-triphenylene-hexacarbonitrile on Ag(111). Journal of Physical Chemistry C, 2010, 114, 6650-6657.	3.1	27

#	Article	IF	CITATIONS
199	Energy level alignment at interfaces in organic photovoltaic devices. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 12-24.	1.7	27
200	Enhanced hole injection in a polymer light emitting diode using a small molecule monolayer bound to the anode. Chemical Physics Letters, 2006, 426, 370-373.	2.6	26
201	Dynamic Photoswitching of Electron Energy Levels at Hybrid ZnO/Organic Photochromic Molecule Junctions. Advanced Functional Materials, 2018, 28, 1800716.	14.9	26
202	Solubility limit and material properties of a κ-(AlxGa1â^'x)2O3 thin film with a lateral cation gradient on (00.1)Al2O3 by tin-assisted PLD. APL Materials, 2020, 8, 021103.	5.1	26
203	Pentacene on Ag(111): Correlation of Bonding Distance with Intermolecular Interaction and Order. ACS Applied Materials & Interfaces, 2013, 5, 9377-9381.	8.0	25
204	A heterotriangulene polymer for air-stable organic field-effect transistors. Polymer Chemistry, 2013, 4, 5337.	3.9	25
205	The Relationship between Structural and Electrical Characteristics in Perylenecarboxydiimideâ€Based Nanoarchitectures. Advanced Functional Materials, 2015, 25, 2501-2510.	14.9	25
206	Electrode Work Function Engineering with Phosphonic Acid Monolayers and Molecular Acceptors: Charge Redistribution Mechanisms. Advanced Functional Materials, 2018, 28, 1704438.	14.9	25
207	In Situ Infrared Spectroscopic Monitoring and Characterization of the Growth of Polydopamine (PDA) Films. Physica Status Solidi (B): Basic Research, 2019, 256, 1800308.	1.5	25
208	Thermally Activated Goldâ€Mediated Transition Metal Dichalcogenide Exfoliation and a Unique Goldâ€Mediated Transfer. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000408.	2.4	25
209	The importance of sulfonate to the self-doping mechanism of the water-soluble conjugated polyelectrolyte PCPDTBT-SO ₃ K. Materials Chemistry Frontiers, 2020, 4, 3556-3566.	5.9	25
210	The Schottky–Mott Rule Expanded for Two-Dimensional Semiconductors: Influence of Substrate Dielectric Screening. ACS Nano, 2021, 15, 14794-14803.	14.6	25
211	Evidence for Physisorption of Aluminum on the Surface of Electroluminescent Sexiphenyl. Advanced Materials, 1998, 10, 1038-1043.	21.0	24
212	Influence of alkyl chain substitution on sexithienyl-metal interface morphology and energetics. Applied Physics Letters, 2006, 88, 203109.	3.3	24
213	Spontaneous charge transfer at organic-organic homointerfaces to establish thermodynamic equilibrium. Applied Physics Letters, 2007, 90, 122113.	3.3	24
214	Key role of molecular kinetic energy inÂearlyÂstages ofÂpentacene island growth. Applied Physics A: Materials Science and Processing, 2009, 95, 21-27.	2.3	24
215	Electronic Properties of Cu-Phthalocyanine/Fullerene Planar and Bulk Hetereojunctions on PEDOT:PSS. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1732-1737.	2.9	24
216	<i>In-situ</i> tuning threshold voltage of field-effect transistors based on blends of poly(3-hexylthiophene) with an insulator electret. Applied Physics Letters, 2015, 107, .	3.3	24

#	Article	IF	CITATIONS
217	Design principles of carbazole/dibenzothiophene derivatives as host material in modern efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6989-6996.	5.5	24
218	A Self-Limited Atomic Layer Deposition of WS ₂ Based on the Chemisorption and Reduction of Bis(<i>t</i> -butylimino)bis(dimethylamino) Complexes. Chemistry of Materials, 2019, 31, 1881-1890.	6.7	24
219	Secondary Phosphine Oxide Functionalized Gold Clusters and Their Application in Photoelectrocatalytic Hydrogenation Reactions. Journal of the American Chemical Society, 2021, 143, 9595-9600.	13.7	24
220	Controlling the work function of indium tin oxide: differentiating dipolar from local surface effects. Synthetic Metals, 2003, 138, 223-227.	3.9	23
221	Arrays of crystalline C60 and pentacene nanocolumns. Applied Physics Letters, 2007, 90, 193117.	3.3	23
222	Deep blue polymer light emitting diodes based on easy to synthesize, non-aggregating polypyrene. Optics Express, 2011, 19, A1281.	3.4	23
223	A Multifunctional Interlayer for Solution Processed High Performance Indium Oxide Transistors. Scientific Reports, 2018, 8, 10946.	3.3	23
224	The Importance of Ligand Selection on the Formation of Metal Phosphonate-Derived CoMoP and CoMoP ₂ Nanoparticles for Catalytic Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 4147-4156.	5.0	23
225	Direct Measurement of Surface Complex Loading and Surface Dipole and Their Effect on Simple Device Behavior. Journal of Physical Chemistry B, 2005, 109, 3966-3970.	2.6	22
226	Metal-to-Acceptor Charge Transfer through a Molecular Spacer Layer. Journal of Physical Chemistry C, 2011, 115, 17503-17507.	3.1	22
227	Interlayer molecular diffusion and thermodynamic equilibrium in organic heterostructures on a metal electrode. Journal of Applied Physics, 2011, 110, .	2.5	22
228	Valence band structure of rubrene single crystals in contact with an organic gate dielectric. Organic Electronics, 2013, 14, 1825-1832.	2.6	22
229	All-solution-processed multilayer polymer/dendrimer light emitting diodes. Organic Electronics, 2016, 35, 164-170.	2.6	22
230	Electronic Properties of Optically Switchable Photochromic Diarylethene Molecules at the Interface with Organic Semiconductors. ChemPhysChem, 2017, 18, 722-727.	2.1	22
231	Impact of surface states and bulk doping level on hybrid inorganic/organic semiconductor interface energy levels. Journal of Applied Physics, 2018, 123, 245501.	2.5	22
232	Sub-nanometer Control of the Interlayer Spacing in Thin Films of Intercalated Rodlike Conjugated Molecules. Journal of Physical Chemistry B, 2007, 111, 14097-14101.	2.6	21
233	Improving the Stability of Polymer FETs by Introducing Fixed Acceptor Units into the Main Chain:Â Application to Poly(alkylthiophenes). Chemistry of Materials, 2007, 19, 1472-1481.	6.7	21
234	Optimization of the Activity of Ni-Based Nanostructures for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 4554-4563.	5.1	21

#	Article	IF	CITATIONS
235	Understanding the evolution of the Raman spectra of molecularly p-doped poly(3-hexylthiophene-2,5-diyl): signatures of polarons and bipolarons. Physical Chemistry Chemical Physics, 2022, 24, 3109-3118.	2.8	21
236	Energy level alignment of electrically doped hole transport layers with transparent and conductive indium tin oxide and polymer anodes. Journal of Applied Physics, 2007, 102, 073719.	2.5	20
237	Internal Structure of Nanoporous TiO2/Polyion Thin Films Prepared by Layer-by-Layer Deposition. Langmuir, 2007, 23, 9860-9865.	3.5	20
238	Solution-based metal electrode modification for improved charge injection in polymer field-effect transistors. Organic Electronics, 2009, 10, 1459-1465.	2.6	20
239	Dualâ€Characteristic Transistors Based on Semiconducting Polymer Blends. Advanced Electronic Materials, 2016, 2, 1600267.	5.1	20
240	Oxygen Vacancies Allow Tuning the Work Function of Vanadium Dioxide. Advanced Materials Interfaces, 2018, 5, 1801033.	3.7	20
241	Dynamically Switching the Electronic and Electrostatic Properties of Indium–Tin Oxide Electrodes with Photochromic Monolayers: Toward Photoswitchable Optoelectronic Devices. ACS Applied Nano Materials, 2019, 2, 1102-1110.	5.0	20
242	Predicting the yield of ion pair formation in molecular electrical doping: redox-potentials versus ionization energy/electron affinity. Journal of Materials Chemistry C, 2019, 7, 13839-13848.	5.5	20
243	Theory of optically induced Förster coupling in van der Waals coupled heterostructures. Physical Review B, 2019, 99, .	3.2	20
244	Large Conduction Band Energy Offset Is Critical for High Fill Factors in Inorganic Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2343-2348.	17.4	20
245	The influence of the counterion on the electronic structure in doped phenylene-based materials. Surface Science, 2000, 454-456, 1000-1004.	1.9	19
246	Vacuum sublimed α,ï‰-dihexylsexithiophene thin films: Correlating electronic structure and molecular orientation. Journal of Applied Physics, 2008, 104, 033717.	2.5	19
247	Effect of molecular electrical doping on polyfuran based photovoltaic cells. Applied Physics Letters, 2015, 106, .	3.3	19
248	Typeâ€I Energy Level Alignment at the PTCDA—Monolayer MoS ₂ Interface Promotes Resonance Energy Transfer and Luminescence Enhancement. Advanced Science, 2021, 8, 2100215.	11.2	19
249	Van der Waals organic/inorganic heterostructures in the two-dimensional limit. CheM, 2021, 7, 2989-3026.	11.7	19
250	Bipolaron formation in para-sexiphenyl thin films upon Cs doping. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 295-298.	2.1	18
251	Hexa-peri-hexabenzocoronene on Ag(111):  Monolayer/Multilayer Transition of Molecular Orientation and Electronic Structure. Journal of Physical Chemistry C, 2008, 112, 1570-1574.	3.1	18
252	Electronic Properties of Interfaces between PCPDTBT and Prototypical Electrodes Studied by Photoemission Spectroscopy. ChemPhysChem, 2011, 12, 2345-2351.	2.1	18

#	Article	IF	CITATIONS
253	Impact of alkyl side chains at self-assembly, electronic structure and charge arrangement in sexithiophene thin films. Organic Electronics, 2011, 12, 903-910.	2.6	18
254	Importance of Substrate Work Function Homogeneity for Reliable Ionization Energy Determination by Photoelectron Spectroscopy. Physica Status Solidi (B): Basic Research, 2019, 256, 1800299.	1.5	18
255	Niobiumâ€Doped Titanium Dioxide with High Dopant Contents for Enhanced Lithiumâ€lon Storage. ChemElectroChem, 2020, 7, 4016-4023.	3.4	18
256	The Interlayer Method: A Universal Tool for Energy Level Alignment Tuning at Inorganic/Organic Semiconductor Heterojunctions. Advanced Functional Materials, 2021, 31, 2010174.	14.9	18
257	Electronic structure of large disc-type donors and acceptors. Physical Chemistry Chemical Physics, 2010, 12, 7184.	2.8	17
258	CdS/Low-Band-Gap Kesterite Thin-Film Solar Cell Absorber Heterojunction: Energy Level Alignment and Dominant Recombination Process. ACS Applied Energy Materials, 2018, 1, 475-482.	5.1	17
259	Mechanism and Timescales of Reversible pâ€Doping of Methylammonium Lead Triiodide by Oxygen. Advanced Materials, 2021, 33, e2100211.	21.0	17
260	Band gap engineering in blended organic semiconductor films based on dielectric interactions. Nature Materials, 2021, 20, 1407-1413.	27.5	17
261	A High Molecular Weight Donor for Electron Injection Interlayers on Metal Electrodes. ChemPhysChem, 2009, 10, 2947-2954.	2.1	16
262	Infrared spectroscopic ellipsometry (IRSE) and Xâ€ray photoelectron spectroscopy (XPS) monitoring the preparation of maleimideâ€functionalized surfaces: from Au towards Si (111). Surface and Interface Analysis, 2011, 43, 1203-1210.	1.8	16
263	Final-state diffraction effects in angle-resolved photoemission at an organic-metal interface. Physical Review B, 2011, 84, .	3.2	16
264	Microstructure and Elastic Constants of Transition Metal Dichalcogenide Monolayers from Friction and Shear Force Microscopy. Advanced Materials, 2018, 30, e1803748.	21.0	16
265	Electronic properties of hybrid organic/inorganic semiconductor pn-junctions. Journal of Physics Condensed Matter, 2019, 31, 064002.	1.8	16
266	Position-locking of volatile reaction products by atmosphere and capping layers slows down photodecomposition of methylammonium lead triiodide perovskite. RSC Advances, 2020, 10, 17534-17542.	3.6	16
267	Opportunities for energy level tuning at inorganic/organic semiconductor interfaces. Applied Physics Letters, 2021, 119, .	3.3	16
268	The interface electronic properties of organic photovoltaic cells. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 177-185.	1.7	15
269	<i>Operando</i> diffuse reflectance UV-vis spectroelectrochemistry for investigating oxygen evolution electrocatalysts. Catalysis Science and Technology, 2020, 10, 517-528.	4.1	15
270	Orientation of molecules in phenylene oligomer thin films: influence of the substrate temperature. Synthetic Metals, 1999, 101, 627-628.	3.9	14

#	Article	IF	CITATIONS
271	Impact of Molecular Dipole Moments on Fermi Level Pinning in Thin Films. Journal of Physical Chemistry C, 2014, 118, 11731-11737.	3.1	14
272	Pulsed thermal deposition of binary and ternary transition metal dichalcogenide monolayers and heterostructures. Applied Physics Letters, 2019, 114, .	3.3	14
273	Morphology-controlled MoS ₂ by low-temperature atomic layer deposition. Nanoscale, 2020, 12, 20404-20412.	5.6	14
274	Modulating the luminance of organic light-emitting diodes <i>via</i> optical stimulation of a photochromic molecular monolayer at transparent oxide electrode. Nanoscale, 2020, 12, 5444-5451.	5.6	14
275	Band Offsets at κ-([Al,In] _{<i>x</i>} Ga _{1–<i>x</i>}) ₂ O ₃ /MgO Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 8879-8885.	8.0	14
276	Electronic properties of metal halide perovskites and their interfaces: the basics. Materials Horizons, 2021, , .	12.2	14
277	Combined photoelectron and metastable atom electron spectroscopy study of n-doped oligophenylene thin films. Applied Surface Science, 2001, 175-176, 764-768.	6.1	13
278	Combined XPS, AFM, TEM and ellipsometric studies on nanoscale layers in organic light emitting diodes. Surface Science, 2002, 507-510, 473-479.	1.9	13
279	Electronic non-equilibrium conditions at C60–pentacene heterostructures. Journal of Electron Spectroscopy and Related Phenomena, 2009, 174, 40-44.	1.7	13
280	Cascade energy transfer versus charge separation in ladder-type oligo(<i>p</i> -phenylene)/ZnO hybrid structures for light-emitting applications. Applied Physics Letters, 2014, 105, .	3.3	13
281	Interface Dipole and Growth Mode of Partially and Fully Fluorinated Rubrene on Au(111) and Ag(111). Journal of Physical Chemistry C, 2015, 119, 6769-6776.	3.1	13
282	Polarization Resistanceâ€Free Mn ₃ O ₄ â€Based Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2010-2018.	3.4	13
283	Stoichiometric and Oxygen-Deficient VO ₂ as Versatile Hole Injection Electrode for Organic Semiconductors. ACS Applied Materials & Interfaces, 2018, 10, 10552-10559.	8.0	13
284	Switching the Electronic Properties of ZnO Surfaces with Negative Tâ€Type Photochromic Pyridylâ€dihydropyrene Layers and Impact of Fermi Level Pinning. Advanced Materials Interfaces, 2019, 6, 1900211.	3.7	13
285	Two-dimensional plasmonic polarons in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi> -doped monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>MoS</mml:mi><td>3.2 :mrow><</td><td>13 mml:mn>2<</td></mml:mrow></mml:msub></mml:math </mml:math 	3.2 :mrow><	13 mml:mn>2<
286	Physical Review 8, 2021, 103, . Structural and electronic implications for carrier injection intoÂorganic semiconductors. Applied Physics A: Materials Science and Processing, 2009, 97, 1-9.	2.3	12
287	Organic photovoltaic cells with interdigitated structures based on pentacene nanocolumn arrays. Organic Electronics, 2011, 12, 2180-2184.	2.6	12
288	Polarity driven morphology of zinc oxide nanostructures. Applied Physics Letters, 2013, 103, .	3.3	12

#	Article	IF	CITATIONS
289	Role of Hybrid Charge Transfer States in the Charge Generation at ZnMgO/P3HT Heterojunctions. Journal of Physical Chemistry C, 2017, 121, 21955-21961.	3.1	12
290	Stark effect of hybrid charge transfer states at planar ZnO/organic interfaces. Physical Review B, 2018, 98, .	3.2	12
291	Energy-level alignment at strongly coupled organic–metal interfaces. Journal of Physics Condensed Matter, 2019, 31, 194002.	1.8	12
292	Conductive Polymer Work Function Changes due to Residual Water: Impact of Temperatureâ€Dependent Dielectric Constant. Advanced Electronic Materials, 2020, 6, 2000408.	5.1	12
293	Energy-Level Alignment Tuning at Tetracene/c-Si Interfaces. Journal of Physical Chemistry C, 2020, 124, 27867-27881.	3.1	12
294	Insights into Charge Transfer at an Atomically Precise Nanocluster/Semiconductor Interface. Angewandte Chemie, 2020, 132, 7822-7828.	2.0	12
295	Direct Probing of Gap States and Their Passivation in Halide Perovskites by High-Sensitivity, Variable Energy Ultraviolet Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 5217-5225.	3.1	12
296	Temperatureâ€Dependent Electronic Groundâ€State Charge Transfer in van der Waals Heterostructures. Advanced Materials, 2021, 33, e2008677.	21.0	12
297	Role of Heterojunctions of Core–Shell Heterostructures in Gas Sensing. ACS Applied Materials & Interfaces, 2022, 14, 22041-22052.	8.0	12
298	On the fundamental processes in molecular electrical doping of organic semiconductors. AIP Conference Proceedings, 2012, , .	0.4	11
299	Seleno groups control the energy-level alignment between conjugated organic molecules and metals. Journal of Chemical Physics, 2014, 140, 014705.	3.0	11
300	Work function increase of transparent conductive electrodes by solution processed electron acceptor molecular monolayers. Applied Physics A: Materials Science and Processing, 2014, 114, 291-295.	2.3	11
301	Monolayer Phases of a Dipolar Perylene Derivative on Au(111) and Surface Potential Build-Up in Multilayers. Langmuir, 2016, 32, 3587-3600.	3.5	11
302	Electronic band dispersion determination in azimuthally disordered transition-metal dichalcogenide monolayers. Communications Physics, 2019, 2, .	5.3	11
303	Lightâ€Induced Defect Generation in CH 3 NH 3 PbI 3 Thin Films and Single Crystals. Solar Rrl, 2020, 4, 1900216.	5.8	11
304	Lithography-Free Miniaturization of Resistive Nonvolatile Memory Devices to the 100 nm Scale by Glancing Angle Deposition. Nano Letters, 2017, 17, 1149-1153.	9.1	11
305	Photoinduced Energy-Level Realignment at Interfaces between Organic Semiconductors and Metal-Halide Perovskites. Physical Review Letters, 2021, 127, 246401.	7.8	11
306	VUV photoemission using synchrotron light: a tool for characterising surfaces and interfaces occurring in OLEDs. Journal of Alloys and Compounds, 2004, 382, 179-186.	5.5	10

#	Article	IF	CITATIONS
307	Subtle Fluorination of Conjugated Molecules Enables Stable Nanoscale Assemblies on Metal Surfaces. Journal of Physical Chemistry C, 2018, 122, 18902-18911.	3.1	10
308	Correlating the effective work function at buried organic/metal interfaces with organic solar cell characteristics. Journal of Materials Chemistry C, 2018, 6, 8060-8068.	5.5	10
309	Single-Step Formation of a Low Work Function Cathode Interlayer and n-type Bulk Doping from Semiconducting Polymer/Polyethylenimine Blend Solution. ACS Applied Materials & Interfaces, 2020, 12, 28801-28807.	8.0	10
310	Infrared spectroscopy depth profiling of organic thin films. Materials Horizons, 2021, 8, 1461-1471.	12.2	10
311	Sensing and structure analysis by in situ IR spectroscopy: from mL flow cells to microfluidic applications. Journal of Physics Condensed Matter, 2020, 32, 393002.	1.8	10
312	Angle resolved ultraviolet photoelectron spectroscopy of oriented sexiphenyl layers. Synthetic Metals, 2000, 111-112, 591-594.	3.9	9
313	Morphology, interfacial electronic structure, and optical properties of oligothiophenes grown onZnSe(100)by molecular beam deposition. Physical Review B, 2006, 73, .	3.2	9
314	Energy level pinning of an n-type semiconducting polymer on conductive polymer electrodes: Effects of work function and annealing. Journal of Applied Physics, 2012, 112, 033712.	2.5	9
315	X-Ray Standing Waves and Surfaces X-Ray Scattering Studies of Molecule-Metal Interfaces. , 2013, , 153-172.		9
316	Influence of Merocyanine Molecular Dipole Moments on the Valence Levels in Thin Films and the Interface Energy Level Alignment with Au(111). Journal of Physical Chemistry C, 2013, 117, 19031-19037.	3.1	9
317	Performance enhancement of diindenoperylene-based organic photovoltaic cells by nanocolumn-arrays. Organic Electronics, 2014, 15, 2210-2217.	2.6	9
318	Coating of Vertically Aligned Carbon Nanotubes by a Novel Manganese Oxide Atomic Layer Deposition Process for Binderâ€Free Hybrid Capacitors. Advanced Materials Interfaces, 2016, 3, 1600313.	3.7	9
319	Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency. Molecular Systems Design and Engineering, 2018, 3, 741-747.	3.4	9
320	Substrate-Independent Energy-Level Pinning of an Organic Semiconductor Providing Versatile Hole-Injection Electrodes. ACS Applied Electronic Materials, 2020, 2, 3994-4001.	4.3	9
321	Direct growth of crystalline triazine-based graphdiyne using surface-assisted deprotection–polymerisation. Chemical Science, 2021, 12, 12661-12666.	7.4	9
322	Strain states and relaxation for \$\$alpha\$\$-(Al\$\$_x\$\$Ga\$\$_{1-x}\$\$)\$\$_2\$\$O\$\$_3\$\$ thin films on prismatic planes of \$\$alpha\$\$-Al\$\$_2\$\$O\$\$_3\$\$ in the full composition range: Fundamental difference of a- and m-epitaxial planes in the manifestation of shear strain and lattice tilt. Journal of Materials Research, 2021, 36, 4816-4831.	2.6	9
323	Gap states induce soft Fermi level pinning upon charge transfer at ZnO/molecular acceptor interfaces. Physical Review Materials, 2019, 3, .	2.4	9
324	Low Temperature Heating of Silverâ€Mediated Exfoliation of MoS ₂ . Advanced Materials Interfaces, 2022, 9, .	3.7	9

#	Article	IF	CITATIONS
325	Quantum Efficiency Enhancement of Lead-Halide Perovskite Nanocrystal LEDs by Organic Lithium Salt Treatment. ACS Applied Materials & Interfaces, 2022, 14, 28985-28996.	8.0	9
326	The interaction of aluminum and p-sexiphenyl. Synthetic Metals, 1999, 101, 438-439.	3.9	8
327	Interfacial electronic structure for Ca and an electroluminescent polymer: Poly (2,5-diheptyl-1,4-phenylene-alt-2,5-thienylene). Journal of Applied Physics, 2000, 87, 1331-1336.	2.5	8
328	In-Situ Monitoring the Growth of Polypyrrole Films at Liquid/Solid Interface Using a Combination of Polarized Infrared Spectroscopy and Reflectance Anisotropy Spectroscopy. Journal of the Electrochemical Society, 2012, 159, H811-H815.	2.9	8
329	Interface Properties of Organic <i>para</i> -Hexaphenyl/α-Sexithiophene Heterostructures Deposited on Highly Oriented Pyrolytic Graphite. Langmuir, 2013, 29, 14444-14450.	3.5	8
330	Organic Semiconductor/Gold Interface Interactions: From Physisorption on Planar Surfaces to Chemical Reactions with Metal Nanoparticles. ChemPhysChem, 2015, 16, 2602-2608.	2.1	8
331	Energy level alignment at organic/inorganic semiconductor heterojunctions: Fermi level pinning at the molecular interlayer with a reduced energy gap. Physical Chemistry Chemical Physics, 2019, 21, 15072-15079.	2.8	8
332	Revealing the Stoichiometric Tolerance of Lead Trihalide Perovskite Thin Films. Chemistry of Materials, 2020, 32, 114-120.	6.7	8
333	Illuminationâ€Driven Energy Level Realignment at Buried Interfaces between Organic Charge Transport Layers and a Lead Halide Perovskite. Solar Rrl, 2022, 6, .	5.8	8
334	Atomic Layer Deposition of MoS ₂ Decorated TiO ₂ Nanotubes for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2022, 9, .	3.7	8
335	Determination of Crystallite Size and Lattice Strain in Hexaphenyl Thin Films by Line Profile Analysis. Materials Research Society Symposia Proceedings, 1999, 561, 161.	0.1	7
336	Correlating photocurrent spectra and electrical transport parameters in organic field effect transistors. Organic Electronics, 2010, 11, 273-278.	2.6	7
337	Impact of solvent exposure on the structure and electronic properties of CH3NH3PbI3â^'xClx mixed halide perovskite films. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	7
338	Doping-Induced Electron Transfer at Organic/Oxide Interfaces: Direct Evidence from Infrared Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 4511-4516.	3.1	7
339	Tetraaryldiborane(4) Can Emit Dual Fluorescence Responding to the Structural Change around the B–B Bond. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
340	Organic light-emitting devices based on new heterocyclic compounds. , 1999, 3797, 209.		6
341	Photoemission spectroscopic investigation on the interface formation of a ladder-type poly(para-phenylene) with aluminum. Applied Physics Letters, 2000, 76, 3738-3740.	3.3	6
342	The morphology of organic nanocolumn arrays: Amorphous versus crystalline solids. Journal of Materials Research, 2009, 24, 1492-1497.	2.6	6

#	Article	IF	CITATIONS
343	Formation of intra-island grain boundaries in pentacene monolayers. Physical Chemistry Chemical Physics, 2011, 13, 21102.	2.8	6
344	Nanoscale Si template for the growth of self-organized one-dimensional nanostructures. Applied Surface Science, 2013, 267, 192-195.	6.1	6
345	Polarity of pulsed laser deposited ZnO nanostructures. Applied Physics Letters, 2016, 108, .	3.3	6
346	Simultaneous Effect of Ultraviolet Radiation and Surface Modification on the Work Function and Hole Injection Properties of ZnO Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900876.	1.8	6
347	Ordered Donor–Acceptor Complex Formation and Electron Transfer in Co-deposited Films of Structurally Dissimilar Molecules. Journal of Physical Chemistry C, 2020, 124, 11023-11031.	3.1	6
348	Electrode Work Function Reduction by Polyethylenimine Interlayers: Choice of Solvent and Residual Solvent Removal for Superior Functionality. Advanced Materials Interfaces, 2020, 7, 2000291.	3.7	6
349	Disentangling Bulk and Interface Phenomena in a Molecularly Doped Polymer Semiconductor. Advanced Optical Materials, 2021, 9, 2002039.	7.3	6
350	Energy Level Alignment at the C ₆₀ /Monolayerâ€WS ₂ Interface on Insulating and Conductive Substrates. Advanced Electronic Materials, 2021, 7, 2100425.	5.1	6
351	Dual Doping of MoP with M(Mn,Fe) and S to Achieve High Hydrogen Evolution Reaction Activity in Both Acidic and Alkaline Media. ChemCatChem, 2021, 13, 4392-4402.	3.7	6
352	Reversible oxygen-induced p-doping of mixed-cation halide perovskites. APL Materials, 2021, 9, 081104.	5.1	6
353	Benzocyclobutene polymer as an additive for a benzocyclobutene-fullerene: application in stable p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9347-9353.	10.3	6
354	X-ray standing waves reveal lack of OH termination at hydroxylated ZnO(0001) surfaces. Physical Review Materials, 2020, 4, .	2.4	6
355	Morphology of p-Hexaphenyl thin films. Synthetic Metals, 1997, 84, 649-650.	3.9	5
356	Observation of filled states at the Fermi-level in alkali-metal intercalated organic films: dependence on substrate work function. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 495-498.	1.7	5
357	Charging and exciton-mediated decharging of metal nanoparticles in organic semiconductor matrices. Applied Physics Letters, 2014, 104, 163302.	3.3	5
358	Dipolar Substitution Impacts Growth and Electronic Properties of Para â€ S exiphenyl Thin Films. Advanced Materials Interfaces, 2020, 7, 1901707.	3.7	5
359	The energy level alignment of the ferrocene–EGaIn interface studied with photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 13458-13467.	2.8	5
360	Molecular Orientation Dependence of the Ionization Energy of Pentacene in Thin Films. Springer Proceedings in Physics, 2009, , 141-145.	0.2	5

#	Article	IF	CITATIONS
361	Investigations on the Aluminum/Para-Hexaphenyl Interface in Light Emitting Devices. Materials Research Society Symposia Proceedings, 1997, 488, 509.	0.1	4
362	Metal vs. Polymer Electrodes in Organic Devices: Energy Level Alignment, Hole Injection, and Structure. Materials Research Society Symposia Proceedings, 2003, 771, 361.	0.1	4
363	Structural study of thin films of neutral and potassium-doped oligophenylenes on Cu(100). Surface Science, 2005, 589, 19-31.	1.9	4
364	Comment on "Electron Core-Hole Interaction and Its Induced Ionic Structural Relaxation in Molecular Systems under X-Ray Irradiation― Physical Review Letters, 2007, 99, 059601; discussion 059602.	7.8	4
365	Side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells. Applied Physics Letters, 2015, 107, 203301.	3.3	4
366	Metal nanoparticle mediated space charge and its optical control in an organic hole-only device. Applied Physics Letters, 2016, 108, 153302.	3.3	4
367	A comprehensive and unified picture of energy level alignment at interfaces with organic semiconductors. , 2016, , .		4
368	Intercalation makes the difference with TiS2: Boosting electrocatalytic water oxidation activity through Co intercalation. Journal of Materials Research, 2018, 33, 528-537.	2.6	4
369	Direct observation of state-filling at hybrid tin oxide/organic interfaces. Applied Physics Letters, 2019, 114, .	3.3	4
370	<title>New polymeric heterolayer systems for efficient light-emitting devices</title> ., 1998, 3476, 188.		3
371	Ultraviolet photoelectron spectroscopic study of heterocyclic model compounds for electroluminescent devices. Synthetic Metals, 1999, 102, 1069-1070.	3.9	3
372	NEXAFS Studies of Molecular Orientations at Molecule-Substrate Interfaces. , 2013, , 119-151.		3
373	Modification of TiO 2 (1 1 0)/organic hole transport layer interface energy levels by a dipolar perylene derivative. Electronic Structure, 2019, 1, 015007.	2.8	3
374	Electronic properties and degradation upon VUV irradiation of sodium chloride on Ag(111) studied by photoelectron spectroscopy. Electronic Structure, 2021, 3, 034008.	2.8	3
375	Electronic Properties of the Interfaces Between the Wide Bandgap Organic Semiconductor Para-Sexiphenyl and Samarium. Advanced Functional Materials, 2001, 11, 51-58.	14.9	3
376	Ultrafast Pump–Probe Microscopy on 2D Transition Metal Dichalcogenides. Advanced Photonics Research, 2022, 3, .	3.6	3
377	Use of a Multiple Hydride Donor To Achieve an n-Doped Polymer with High Solvent Resistance. ACS Applied Materials & Interfaces, 2022, 14, 33598-33605.	8.0	3
378	Crystal structure of p-hexaphenyl thin films. Synthetic Metals, 1997, 84, 279-280.	3.9	2

#	Article	IF	CITATIONS
379	Novel low-molar-mass glasses for photorefractive and electroluminescent applications. Synthetic Metals, 1999, 102, 1535-1536.	3.9	2
380	The Valence Electronic Structure of N-Doped P-Sexiphenyl. Materials Research Society Symposia Proceedings, 1999, 561, 167.	0.1	2
381	Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals. Materials Research Society Symposia Proceedings, 2001, 708, 241.	0.1	2
382	Data scattering in scanning tunneling spectroscopy. Ultramicroscopy, 2008, 109, 85-90.	1.9	2
383	Substrate- and oxidation-induced roughness of individual terraces of pentacene thin films. Thin Solid Films, 2011, 519, 1857-1860.	1.8	2
384	Fundamental Electronic Structure of Organic Solids and Their Interfaces by Photoemission Spectroscopy and Related Methods. , 2013, , 173-217.		2
385	Charge Separation at Nanostructured Molecular Donor–Acceptor Interfaces. Advances in Polymer Science, 2017, , 77-108.	0.8	2
386	Oligothiopheneâ€Based Phosphonates for Surface Modification of Ultraflat Transparent Conductive Oxides. Advanced Materials Interfaces, 2020, 7, 1902114.	3.7	2
387	Tuning material properties of amorphous zinc oxynitride thin films by magnesium addition. APL Materials, 2021, 9, 021120.	5.1	2
388	Organic-Metal Interfaces. , 2001, , .		2
389	Kinetic Study on the Adsorption of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag Nanoparticles in Chloroform: Implications for the Charge Transfer Complex of Ag–F ₄ TCNQ. ACS Applied Nano Materials, 2021, 4, 11625-11635.	5.0	2
390	A New Alternative for the Low-Workfunction Electrode in Organic Devices. Materials Research Society Symposia Proceedings, 1999, 598, 23.	0.1	1
391	Systematic Modification of Indium Tin Oxide to Enhance Diode Device Behavior. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	1
392	Focus Issue: Organic light-emitting diodes–status quo and current developments. Optics Express, 2011, 19, A1237.	3.4	1
393	White fluorescent nano-fibers prepared by periodic organic hetero-epitaxy. Proceedings of SPIE, 2013, , ·	0.8	1
394	Electronic Properties of Optically Switchable Photochromic Diarylethene Molecules at the Interface with Organic Semiconductors. ChemPhysChem, 2017, 18, 717-717.	2.1	1
395	Experimental Investigation on Charge Transfer Between Organic Adsorbates and Solid Surfaces. , 2018, , 50-67.		1
396	Fermi level pinned molecular donor/acceptor junctions: reduction of induced carrier density by interfacial charge transfer complexes. Journal of Materials Chemistry C, 2020, 8, 15199-15207.	5.5	1

#	Article	IF	CITATIONS
397	Characterization of Charge States in Conducting Organic Nanoparticles by X-ray Photoemission Spectroscopy. Materials, 2021, 14, 2058.	2.9	1
398	Coupled Organic–Inorganic Nanostructures with Mixed Organic Linker Molecules. ACS Applied Materials & Interfaces, 2021, 13, 37483-37493.	8.0	1
399	Titelbild: Tetraaryldiborane(4) Can Emit Dual Fluorescence Responding to the Structural Change around the B–B Bond (Angew. Chem. 1/2022). Angewandte Chemie, 2022, 134, .	2.0	1
400	Electronic structure of new donor acceptor substituted chromophores. Synthetic Metals, 1999, 101, 514-515.	3.9	0
401	Epitaxial Thin Film Structures of Electroluminescent Materials. Materials Research Society Symposia Proceedings, 1999, 598, 29.	0.1	Ο
402	Photoemission Study of Metal-Deposited p-Sexiphenyl Film. Materials Research Society Symposia Proceedings, 1999, 598, 315.	0.1	0
403	Growth and Morphology of Pentacene Films on Oxide Surfaces. Materials Research Society Symposia Proceedings, 2001, 708, 10541.	0.1	Ο
404	The Effect of Oxygen Exposure on Pentacene Thin Film Electronic Structure. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
405	ALL-ORGANIC FLEXIBLE AND TRANSARENT AMBIPOLAR FETs WITH ORGANIC BULK HETEROJUNCTIONS. Materials Research Society Symposia Proceedings, 2007, 1029, 1.	0.1	Ο
406	Band-offset engineering at organic/inorganic semiconductor heterointerfaces. , 2011, , .		0
407	All solution processed blue multi-layer light emitting diodes realized by thermal layer stabilization and orthogonal solvent processing. Proceedings of SPIE, 2013, , .	0.8	Ο
408	Energy level tuning at inorganic/organic semiconductor heterojunctions. , 2016, , .		0
409	Efficient light emission from hybrid inorganic/organic semiconductor structures by energy level optimization. Proceedings of SPIE, 2016, , .	0.8	Ο
410	Tuning Side Chain and Main Chain Order in a Prototypical Donor–Acceptor Copolymer: Implications for Optical, Electronic, and Photovoltaic Characteristics. Advances in Polymer Science, 2017, , 243-265.	0.8	0
411	Tetraaryldiborane(4) Can Emit Dual Fluorescence Responding to the Structural Change around the B–B Bond. Angewandte Chemie, 0, , .	2.0	0
412	Flexible Accumulation And Depletion Mode Organic Field Effect Transistors With Tunable Threshold Voltage. , 2008, , .		0