Duncan C Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5286894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomic and metabolomic associations with exposures to air pollutants among young adults with childhood asthma history. Environmental Pollution, 2022, 299, 118903.	7.5	12
2	Ambient air pollution and COVID-19 incidence during four 2020–2021 case surges. Environmental Research, 2022, 208, 112758.	7.5	27
3	Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1077-1089.	2.5	6
4	OUP accepted manuscript. Journal of the National Cancer Institute, 2022, , .	6.3	0
5	Bayesian parameter estimation for automatic annotation of gene functions using observational data and phylogenetic trees. PLoS Computational Biology, 2021, 17, e1007948.	3.2	0
6	Longer- and Shorter-term Air Pollution Exposure Associated with COVID-19 Severity and Mortality: A Large Cohort Study in Southern California. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
7	Asthma Disease Status, COPD, and COVID-19 Severity in a Large Multiethnic Population. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3621-3628.e2.	3.8	33
8	Near-roadway air pollution associated with COVID-19 severity and mortality – Multiethnic cohort study in Southern California. Environment International, 2021, 157, 106862.	10.0	23
9	A latent unknown clustering integrating multi-omics data (LUCID) with phenotypic traits. Bioinformatics, 2020, 36, 842-850.	4.1	18
10	Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environment International, 2020, 145, 106091.	10.0	83
11	Radiation Treatment, <i>ATM</i> , <i>BRCA1/2</i> , and <i>CHEK2</i> *1100delC Pathogenic Variants and Risk of Contralateral Breast Cancer. Journal of the National Cancer Institute, 2020, 112, 1275-1279.	6.3	21
12	Novel Common Genetic Susceptibility Loci for Colorectal Cancer. Journal of the National Cancer Institute, 2019, 111, 146-157.	6.3	129
13	Association of a Pathway-Specific Genetic Risk Score With Risk of Radiation-Associated Contralateral Breast Cancer. JAMA Network Open, 2019, 2, e1912259.	5.9	5
14	Near-roadway air pollution exposure and altered fatty acid oxidation among adolescents and young adults $\hat{a} \in \hat{T}$ The interplay with obesity. Environment International, 2019, 130, 104935.	10.0	35
15	A Unified Model for the Analysis of Gene-Environment Interaction. American Journal of Epidemiology, 2019, 188, 760-767.	3.4	15
16	Discovery of common and rare genetic risk variants for colorectal cancer. Nature Genetics, 2019, 51, 76-87.	21.4	377
17	Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors. Gastroenterology, 2018, 154, 2152-2164.e19.	1.3	226
18	Breast Cancer Family History and Contralateral Breast Cancer Risk in Young Women: An Update From the Women's Environmental Cancer and Radiation Epidemiology Study. Journal of Clinical Oncology, 2018, 36, 1513-1520.	1.6	44

#	Article	IF	CITATIONS
19	Re: Kheifets et al. (2017): Residential magnetic fields exposure and childhood leukemia: a population-based case–control study in California. Cancer Causes and Control, 2018, 29, 609-610.	1.8	0
20	Informatics and Data Analytics to Support Exposome-Based Discovery for Public Health. Annual Review of Public Health, 2017, 38, 279-294.	17.4	97
21	Inclusion of biological knowledge in a Bayesian shrinkage model for joint estimation of SNP effects. Genetic Epidemiology, 2017, 41, 320-331.	1.3	5
22	Association of Common Genetic Variants With Contralateral Breast Cancer Risk in the WECARE Study. Journal of the National Cancer Institute, 2017, 109, .	6.3	28
23	What Does "Precision Medicine―Have to Say About Prevention?. Epidemiology, 2017, 28, 479-483.	2.7	8
24	Opportunities and Challenges for Environmental Exposure Assessment in Population-Based Studies. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1370-1380.	2.5	27
25	Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. American Journal of Epidemiology, 2017, 186, 753-761.	3.4	150
26	Estimating the Effect of Targeted Screening Strategies. Epidemiology, 2017, 28, 470-478.	2.7	2
27	GWASeq: targeted re-sequencing follow up to GWAS. BMC Genomics, 2016, 17, 176.	2.8	7
28	A Model to Determine Colorectal Cancer Risk Using Common Genetic Susceptibility Loci. Gastroenterology, 2015, 148, 1330-1339.e14.	1.3	129
29	Genome-wide association study of colorectal cancer identifies six new susceptibility loci. Nature Communications, 2015, 6, 7138.	12.8	138
30	Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study. Toxicological Sciences, 2015, 148, 89-100.	3.1	14
31	The Cardiopulmonary Effects of Ambient Air Pollution and Mechanistic Pathways: A Comparative Hierarchical Pathway Analysis. PLoS ONE, 2014, 9, e114913.	2.5	39
32	Next-Generation Sequencing Studies: Optimal Design and Analysis, Missing Heritability and Rare Variants. Current Epidemiology Reports, 2014, 1, 213-219.	2.4	3
33	Two-stage family-based designs for sequencing studies. BMC Proceedings, 2014, 8, S32.	1.6	6
34	A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk. International Journal of Genomics, 2013, 2013, 1-10.	1.6	2
35	Empirical Hierarchical Bayes Approach to Geneâ€Environment Interactions: Development and Application to Genomeâ€Wide Association Studies of Lung Cancer in TRICL. Genetic Epidemiology, 2013, 37, 551-559.	1.3	7
36	Measurement error in spatial exposure models: study design implications. Environmetrics, 2013, 24, 518-520.	1.4	2

#	Article	IF	CITATIONS
37	Two-phase and family-based designs for next-generation sequencing studies. Frontiers in Genetics, 2013, 4, 276.	2.3	19
38	Invited Commentary: GE-Whiz! Ratcheting Gene-Environment Studies up to the Whole Genome and the Whole Exposome. American Journal of Epidemiology, 2012, 175, 203-207.	3.4	47
39	Joint Analysis for Integrating Two Related Studies of Different Data Types and Different Study Designs Using Hierarchical Modeling Approaches. Human Heredity, 2012, 74, 83-96.	0.8	5
40	Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships. Human Genetics, 2012, 131, 1565-1589.	3.8	294
41	Genetic Epidemiology with a Capital E: Where Will We Be in Another 10 Years?. Genetic Epidemiology, 2012, 36, 179-182.	1.3	4
42	Sample size requirements to detect gene-environment interactions in genome-wide association studies. Genetic Epidemiology, 2011, 35, 201-210.	1.3	90
43	Using biological knowledge to discover higher order interactions in genetic association studies. Genetic Epidemiology, 2010, 34, 863-878.	1.3	20
44	Discovery of complex pathways from observational data. Statistics in Medicine, 2010, 29, 1998-2011.	1.6	27
45	Gene–environment-wide association studies: emerging approaches. Nature Reviews Genetics, 2010, 11, 259-272.	16.3	593
46	Complex System Approaches to Genetic Analysis. Advances in Genetics, 2010, 72, 47-71.	1.8	4
47	Efficient Genome-Wide Association Testing of Gene-Environment Interaction in Case-Parent Trios. American Journal of Epidemiology, 2010, 172, 116-122.	3.4	35
48	Population-Based Study of the Risk of Second Primary Contralateral Breast Cancer Associated With Carrying a Mutation in <i>BRCA1</i> or <i>BRCA2</i> . Journal of Clinical Oncology, 2010, 28, 2404-2410.	1.6	166
49	Methods for Investigating Gene-Environment Interactions in Candidate Pathway and Genome-Wide Association Studies. Annual Review of Public Health, 2010, 31, 21-36.	17.4	138
50	Radiation Exposure, the ATM Gene, and Contralateral Breast Cancer in the Women's Environmental Cancer and Radiation Epidemiology Study. Journal of the National Cancer Institute, 2010, 102, 475-483.	6.3	121
51	Methodological Issues in Multistage Genome-Wide Association Studies. Statistical Science, 2009, 24, 414-429.	2.8	41
52	Use of pathway information in molecular epidemiology. Human Genomics, 2009, 4, 21.	2.9	42
53	The use of hierarchical models for estimating relative risks of individual genetic variants: An application to a study of melanoma. Statistics in Medicine, 2008, 27, 1973-1992.	1.6	20
54	Dose to the Contralateral Breast From Radiotherapy and Risk of Second Primary Breast Cancer in the WECARE Study. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1021-1030.	0.8	280

#	Article	IF	CITATIONS
55	Bayesian Model Averaging in Time-Series Studies of Air Pollution and Mortality. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 311-315.	2.3	32
56	Dissecting Effects of Complex Mixtures. Epidemiology, 2007, 18, 186-190.	2.7	44
57	Hierarchical Bayes prioritization of marker associations from a genomeâ€wide association scan for further investigation. Genetic Epidemiology, 2007, 31, 871-882.	1.3	77
58	Viewpoint: using gene–environment interactions to dissect the effects of complex mixtures. Journal of Exposure Science and Environmental Epidemiology, 2007, 17, S71-S74.	3.9	4
59	Multistage sampling for latent variable models. Lifetime Data Analysis, 2007, 13, 565-581.	0.9	11
60	Optimal twoâ€ s tage genotyping designs for genomeâ€wide association scans. Genetic Epidemiology, 2006, 30, 356-368.	1.3	119
61	High-Volume ???-Omics??? Technologies and the Future of Molecular Epidemiology. Epidemiology, 2006, 17, 490-491.	2.7	13
62	Are We Ready for Genome-wide Association Studies?: Table 1 Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 595-598.	2.5	48
63	Discussion on "Statistical Issues Arising in the Women's Health Initiative". Biometrics, 2005, 61, 930-933.	1.4	0
64	The Need for a Systematic Approach to Complex Pathways in Molecular Epidemiology. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 557-559.	2.5	60
65	Recent Developments in Genomewide Association Scans: A Workshop Summary and Review. American Journal of Human Genetics, 2005, 77, 337-345.	6.2	203
66	Betting Odds and Genetic Associations. Journal of the National Cancer Institute, 2004, 96, 421-423.	6.3	144
67	Commentary: The concept of 'Mendelian Randomization'. International Journal of Epidemiology, 2004, 33, 21-25.	1.9	151
68	Study design: Evaluating gene–environment interactions in the etiology of breast cancer – the WECARE study. Breast Cancer Research, 2004, 6, R199-214.	5.0	106
69	Statistical Issues in Studies of the Long-Term Effects of Air Pollution: The Southern California Children's Health Study. Statistical Science, 2004, 19, 414.	2.8	45
70	Toxicokinetic genetics: an approach to gene-environment and gene-gene interactions in complex metabolic pathways. larc (international Agency for Research on Cancer) Scientific Publications, 2004, , 127-50.	0.4	14
71	Modeling and E-M Estimation of Haplotype-Specific Relative Risks from Genotype Data for a Case-Control Study of Unrelated Individuals. Human Heredity, 2003, 55, 179-190.	0.8	249
72	Bayesian Modeling of Complex Metabolic Pathways. Human Heredity, 2003, 56, 83-93.	0.8	88

#	Article	IF	CITATIONS
73	Bayesian Spatial Modeling of Haplotype Associations. Human Heredity, 2003, 56, 32-40.	0.8	44
74	Point: population stratification: a problem for case-control studies of candidate-gene associations?. Cancer Epidemiology Biomarkers and Prevention, 2002, 11, 505-12.	2.5	154
75	Genome Scan of Complex Traits by Haplotype Sharing Correlation. Genetic Epidemiology, 2001, 21, S582-7.	1.3	23
76	Bayes Estimates of Haplotype Effects. Genetic Epidemiology, 2001, 21, S712-7.	1.3	18
77	International Genetic Epidemiology Society: Commentary onDarkness in El Dorado by Patrick Tierney. Genetic Epidemiology, 2001, 21, 81-104.	1.3	6
78	Genetic epidemiology with a capital ?E?. Genetic Epidemiology, 2000, 19, 289-300.	1.3	45
79	Case-parents design for gene-environment interaction by Schaid. Genetic Epidemiology, 2000, 19, 461-463.	1.3	13
80	Bias and Efficiency in Family-Based Gene-Characterization Studies: Conditional, Prospective, Retrospective, and Joint Likelihoods. American Journal of Human Genetics, 2000, 66, 1119-1131.	6.2	98
81	Some Contributions of Statistics to Environmental Epidemiology. Journal of the American Statistical Association, 2000, 95, 315-319.	3.1	7
82	Some Contributions of Statistics to Environmental Epidemiology. Journal of the American Statistical Association, 2000, 95, 315.	3.1	1
83	Association tests using unaffected-sibling versus pseudo-sibling controls. Genetic Epidemiology, 1999, 17, S731-S736.	1.3	2
84	Ascertainment Bias in Rate Ratio Estimation from Case-Sibling Control Studies of Variable Age-At-Onset Diseases. Biometrics, 1999, 55, 1129-1136.	1.4	12
85	Residential magnetic fields predicted from wiring configurations: I. Exposure model. Bioelectromagnetics, 1999, 20, 399-413.	1.6	14
86	Residential magnetic fields predicted from wiring configurations: II. Relationships to childhood leukemia. Bioelectromagnetics, 1999, 20, 414-422.	1.6	20
87	A joint test of linkage and gene×environment interaction, with affected sib pairs. Genetic Epidemiology, 1999, 17, S563-S568.	1.3	8
88	A generalized estimating equations approach to linkage analysis in sibships in relation to multiple markers and exposure factors. Genetic Epidemiology, 1999, 17, S737-42.	1.3	10
89	Analysis of gene-smoking interaction in lung cancer. Genetic Epidemiology, 1997, 14, 199-214.	1.3	40
90	A Bayesian approach to multipoint mapping in nuclear families. Genetic Epidemiology, 1997, 14, 903-908.	1.3	17

#	Article	IF	CITATIONS
91	SIMULTANEOUSLY MODELLING CENSORED SURVIVAL DATA AND REPEATEDLY MEASURED COVARIATES: A GIBBS SAMPLING APPROACH. Statistics in Medicine, 1996, 15, 1663-1685.	1.6	285
92	Re: â€~Risk of Premenopausal Breast Cancer and Use of Electric Blankets'. American Journal of Epidemiology, 1995, 142, 448-449.	3.4	3
93	Genetic epidemiologic analysis of quantitative phenotypes using gibbs sampling. Genetic Epidemiology, 1995, 12, 753-758.	1.3	7
94	Processed meats and risk of childhood leukemia (California, USA). Cancer Causes and Control, 1994, 5, 195-202.	1.8	98
95	Censored survival models for genetic epidemiology: A gibbs sampling approach. Genetic Epidemiology, 1994, 11, 171-188.	1.3	48
96	Exposure to magnetic fields among electrical workers in relation to leukemia risk in Los Angeles County. American Journal of Industrial Medicine, 1994, 26, 47-60.	2.1	75
97	A generalized estimating equations approach to fitting major gene models in segregation analysis of continuous phenotypes. Genetic Epidemiology, 1993, 10, 61-74.	1.3	11
98	A bivariate genetic analysis of HDL- and LDL-cholesterol incorporating measured covariates: A gibbs sampling application. Genetic Epidemiology, 1993, 10, 623-628.	1.3	5
99	Exposure to Residential Electric and Magnetic Fields and Risk of Childhood Leukemia. American Journal of Epidemiology, 1991, 134, 923-937.	3.4	458
100	Bivariate survival models for analysis of genetic and environmental effects in twins. Genetic Epidemiology, 1990, 7, 121-135.	1.3	28
101	Methods for testing interactions, with applications to occupational exposures, smoking, and lung cancer. American Journal of Industrial Medicine, 1988, 13, 131-147.	2.1	21
102	Fitting models of carcinogenesis to a case-control study of breast cancer. Journal of Chronic Diseases, 1987, 40, 181S-189S.	1.2	14
103	Considerations in Determining Matching Criteria and Stratum Sizes for Case-control Studies. International Journal of Epidemiology, 1981, 10, 389-392.	1.9	20