Alexis Deschamps

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5285947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical and structural evolution of nano-oxides from mechanical alloying to consolidated ferritic oxide dispersion strengthened steel. Acta Materialia, 2022, 233, 117992.	7.9	9
2	High-throughput investigation of ferrite growth kinetics in graded ternary Fe-C-X alloys. Materialia, 2022, 24, 101480.	2.7	2
3	Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Progress in Materials Science, 2021, 117, 100752.	32.8	436
4	A comparative study of Fe-Cr unmixing using differential scanning calorimetry and small-angle scattering. Materials Characterization, 2021, 173, 110934.	4.4	2
5	Complex interactions between precipitation, grain growth and recrystallization in a severely deformed Al-Zn-Mg-Cu alloy and consequences on the mechanical behavior. Materialia, 2021, 15, 101028.	2.7	12
6	Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al–Zn–Mg alloy. Acta Materialia, 2021, 207, 116682.	7.9	52
7	High-throughput compositional mapping of phase transformation kinetics in low-alloy steel. Applied Materials Today, 2021, 23, 100997.	4.3	1
8	Characterization of the nature and morphology of coarse precipitation in various oxide dispersion strengthened steels. Materialia, 2021, 17, 101117.	2.7	4
9	Multi-scale microstuctural investigation of a new Al-Mn-Ni-Cu-Zr aluminium alloy processed by laser powder bed fusion. Materialia, 2021, 18, 101160.	2.7	18
10	Precipitation kinetics in metallic alloys: Experiments and modeling. Acta Materialia, 2021, 220, 117338.	7.9	73
11	Influence of grinding and shot-peening on the near-surface microstructure of a maraging stainless steel. Materialia, 2021, 20, 101220.	2.7	4
12	Precipitation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si3.svg"><mml:msup><mml:mi>î³</mml:mi><mml:mrow><mml:mo>″</mml:mo></mml:mrow>Inconel 718 alloy from microstructure to mechanical properties. Materialia, 2021, 20, 101187.</mml:msup></mml:math>	nl:m₂søp><	/mntl:math>i
13	Solute drag modeling for ferrite growth kinetics during precipitation experiments. Acta Materialia, 2021, 221, 117364.	7.9	4
14	Nano-oxide precipitation kinetics during the consolidation process of a ferritic oxide dispersion strengthened steel Scripta Materialia, 2020, 188, 10-15.	5.2	21
15	Macro and micro mechanical in-situ characterization using synchrotron diffraction of architectured micro-composite duplex stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139852.	5.6	5
16	Correlation between TEM, SAXS and DSC to investigate the influence of SPD on precipitation mechanisms of an Al-Zn-Mg-Cu alloy. MATEC Web of Conferences, 2020, 326, 08006.	0.2	0
17	Advances in Microstructural Understanding of Wrought Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4377-4389.	2.2	21
18	Use of Space-Resolved in-Situ High Energy X-ray Diffraction for the Characterization of the Compositional Dependence of the Austenite-to-Ferrite Transformation Kinetics in Steels. Quantum Beam Science, 2020, 4, 1.	1.2	6

#	Article	IF	CITATIONS
19	Microstructural evolution during long time aging of 15–5PH stainless steel. Materialia, 2020, 9, 100634.	2.7	12
20	Asymmetry of strain rate sensitivity between up- and down-changes in 6000 series aluminium alloys of varying Si content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139517.	5.6	5
21	Precipitation in original Duralumin A-U4G versus modern 2017A alloy. Materialia, 2019, 8, 100429.	2.7	3
22	Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles. Acta Materialia, 2019, 167, 89-102.	7.9	54
23	Effect of the ageing on precipitation spatial distribution in stationary shoulder friction stir welded AA2050 alloys. Materials Characterization, 2019, 154, 193-199.	4.4	15
24	The Basics to Better Understand Couplings in Physical Metallurgy. , 2019, , 25-48.		0
25	Ferritic and martensitic ODS steel resistance upset welding of fuel claddings: Weldability assessment and metallurgical effects. Journal of Nuclear Materials, 2019, 518, 326-333.	2.7	14
26	In-Situ Characterization by High-Energy X-ray Diffraction of the Phase Transformations Leading to Transformation-Induced Plasticity-Aided Bainitic Steel. Quantum Beam Science, 2019, 3, 25.	1.2	1
27	Deformation behavior of lean duplex stainless steels with strain induced martensitic transformation: Role of deformation mechanisms, alloy chemistry and predeformation. Materialia, 2019, 5, 100190.	2.7	13
28	Architectured duplex stainless steels micro-composite: Elaboration and microstructure characterization. Materials and Design, 2018, 145, 156-167.	7.0	7
29	High throughput evaluation of the effect of Mg concentration on natural ageing of Al-Cu-Li-(Mg) alloys. Scripta Materialia, 2018, 150, 156-159.	5.2	36
30	Influence of temperature and strain rate on the deformation and damage mechanisms of oxide dispersion strengthened ferritic steels. Materialia, 2018, 4, 585-594.	2.7	12
31	Recent advances in the metallurgy of aluminum alloys. Part II: Age hardening. Comptes Rendus Physique, 2018, 19, 688-709.	0.9	34
32	Combinatorial approaches for the design of metallic alloys. Comptes Rendus Physique, 2018, 19, 737-754.	0.9	29
33	Cluster hardening in Al-3Mg triggered by small Cu additions. Acta Materialia, 2018, 161, 12-20.	7.9	28
34	Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions. Acta Materialia, 2018, 157, 186-195.	7.9	44
35	On the corrosion, electrochemistry and microstructure of Al-Cu-Li alloy AA2050 as a function of ageing. Materialia, 2018, 1, 25-36.	2.7	26
36	Influence of microstructural parameters on the mechanical properties of oxide dispersion strengthened Fe-14Cr steels. Acta Materialia, 2017, 127, 165-177.	7.9	89

#	Article	IF	CITATIONS
37	Stability of β″ nano-phases in Al-Mg-Si(-Cu) alloy under high dose ion irradiation. Acta Materialia, 2017, 128, 64-76.	7.9	24
38	An investigation of the strain dependence of dynamic precipitation in an Al-Zn-Mg-Cu alloy. Scripta Materialia, 2017, 136, 120-123.	5.2	49
39	Influence of the Martensitic Transformation on the Microscale Plastic Strain Heterogeneities in a Duplex Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 20-25.	2.2	8
40	Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy. Acta Materialia, 2017, 133, 172-185.	7.9	140
41	Lighter structures for transports: The role of innovation in metallurgy. Comptes Rendus Physique, 2017, 18, 445-452.	0.9	6
42	Influence of Mg and Li content on the microstructure evolution of Al Cu Li alloys during long-term ageing. Acta Materialia, 2017, 122, 32-46.	7.9	120
43	A combined characterization of clusters in naturally aged Al–Cu–(Li, Mg) alloys using small-angle neutron and X-ray scattering and atom probe tomography. Journal of Applied Crystallography, 2017, 50, 1725-1734.	4.5	19
44	Direct comparison of Fe-Cr unmixing characterization by atom probe tomography and small angle scattering. Materials Characterization, 2016, 121, 61-67.	4.4	30
45	Modeling of GP(I) zone formation during quench in an industrial AA7449 75 mm thick plate. Materials and Design, 2016, 112, 46-57.	7.0	24
46	When do oxide precipitates form during consolidation of oxide dispersion strengthened steels?. Journal of Nuclear Materials, 2016, 482, 83-87.	2.7	21
47	The effect of minor solute additions on the precipitation path of an Al Cu Li alloy. Acta Materialia, 2016, 115, 104-114.	7.9	135
48	Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment. Materials and Design, 2016, 107, 416-425.	7.0	85
49	Influence of consolidation methods on the recrystallization kinetics of a Fe–14Cr based ODS steel. Journal of Nuclear Materials, 2016, 472, 143-152.	2.7	40
50	A combinatorial approach for studying the effect of Mg concentration on precipitation in an Al–Cu–Li alloy. Scripta Materialia, 2016, 110, 44-47.	5.2	41
51	Impact of grain microstructure on the heterogeneity of precipitation strengthening in an Al–Li–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 51-55.	5.6	23
52	Electron irradiation-enhanced core/shell organization of Al(Cr, Fe, Mn)Si dispersoids in Al–Mg–Si alloys. Philosophical Magazine, 2015, 95, 906-917.	1.6	16
53	Influence of oxide volume fraction on abnormal growth of nanostructured ferritic steels during non-isothermal treatments: An in situ study. Acta Materialia, 2015, 97, 124-130.	7.9	33
54	Size distribution and volume fraction of T1 phase precipitates from TEM images: Direct measurements and related correction. Micron, 2015, 78, 19-27.	2.2	40

#	Article	IF	CITATIONS
55	Microstructure distribution in an AA2050 T34 friction stir weld and its evolution during post-welding heat treatment. Acta Materialia, 2015, 101, 90-100.	7.9	78
56	High-throughput in-situ characterization and modeling of precipitation kinetics in compositionally graded alloys. Acta Materialia, 2015, 101, 1-9.	7.9	36
57	Microstructure mapping of a friction stir welded AA2050 Al–Li–Cu in the T8 state. Philosophical Magazine, 2014, 94, 1451-1462.	1.6	51
58	Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part I: Microstructure Characterization. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 6129-6140.	2.2	13
59	Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part II: Mechanical Characterization and Modeling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 6141-6152.	2.2	22
60	Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al–Cu–Li alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 605, 119-126.	5.6	134
61	Microstructural evolution during ageing of Al–Cu–Li–x alloys. Acta Materialia, 2014, 66, 199-208.	7.9	183
62	The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium–copper–lithium alloy. Corrosion Science, 2014, 80, 494-502.	6.6	129
63	Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy. Acta Materialia, 2014, 66, 105-117.	7.9	111
64	Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy. Acta Materialia, 2014, 62, 129-140.	7.9	155
65	Quantitative description of the T ₁ formation kinetics in an Al–Cu–Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy. Philosophical Magazine, 2014, 94, 1012-1030.	1.6	102
66	Quantitative measurements of dynamic precipitation during fatigue of an Al–Zn–Mg–(Cu) alloy using small-angle X-ray scattering. Acta Materialia, 2014, 74, 96-109.	7.9	94
67	Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy. Acta Materialia, 2014, 75, 134-146.	7.9	197
68	Quantitative Characterization of Precipitate Microstructures in Metallic Alloys Using Small-Angle Scattering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 77-86.	2.2	55
69	On the role of microstructure in governing fracture behavior of an aluminum–copper–lithium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 586, 418-427.	5.6	38
70	Characterization of Joints Between Aluminum and Galvanized Steel Sheets. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2672-2682.	2.2	12
71	The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Materialia, 2013, 61, 2207-2218.	7.9	316
72	The influence of precipitation on plastic deformation of Al–Cu–Li alloys. Acta Materialia, 2013, 61, 4010-4021.	7.9	216

#	Article	IF	CITATIONS
73	Influence of Natural Ageing and Deformation on Precipitation in an Al– <scp>C</scp> u– <scp>L</scp> i Alloy. Advanced Engineering Materials, 2013, 15, 1082-1085.	3.5	30
74	Relating the Early Evolution of Microstructure with the Electrochemical Response and Mechanical Performance of a Cu-Rich and Cu-Lean 7xxx Aluminum Alloy. Journal of the Electrochemical Society, 2012, 159, C492-C502.	2.9	67
75	Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering. Comptes Rendus Physique, 2012, 13, 246-256.	0.9	99
76	A new method for evaluating the size of plate-like precipitates by small-angle scattering. Journal of Applied Crystallography, 2012, 45, 1208-1218.	4.5	52
77	The coexistence of two S (Al2CuMg) phases in Al–Cu–Mg alloys. Acta Materialia, 2012, 60, 6940-6951.	7.9	102
78	Characterization and Modeling of Precipitation Kinetics in a Fe-Si-Ti Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4999-5008.	2.2	16
79	In situ evaluation of dynamic precipitation during plastic straining of an Al–Zn–Mg–Cu alloy. Acta Materialia, 2012, 60, 1905-1916.	7.9	178
80	Experimental and modelling assessment of precipitation kinetics in an Al–Li–Mg alloy. Acta Materialia, 2012, 60, 1917-1928.	7.9	76
81	Atom probe microscopy investigation of Mg site occupancy within δ′ precipitates in an Al–Mg–Li alloy. Scripta Materialia, 2012, 66, 903-906.	5.2	65
82	Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 536, 110-116.	5.6	51
83	Dynamic room temperature precipitation during cyclic deformation of an Al-Zn-Mg-Cu alloy. , 2012, , 1101-1106.		2
84	Precipitation in Al-Cu-Li alloys: from the kinetics of T1 phase precipitation to microstructure development in friction stir welds. , 2012, , 1145-1154.		2
85	Quantitative description of the T1 morphology and strengthening mechanisms in an age-hardenable Al-Li-Cu alloy. , 2012, , 1155-1160.		1
86	Electrochemical aspects of exfoliation corrosion of aluminium alloys: The effects of heat treatment. Corrosion Science, 2011, 53, 1394-1400.	6.6	59
87	Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys. Corrosion Science, 2011, 53, 3139-3149.	6.6	185
88	Low temperature precipitation kinetics of niobium nitride platelets in Fe. Materials Letters, 2011, 65, 2265-2268.	2.6	27
89	Microstructure modifications induced by a laser surface treatment in an AA7449 aluminium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2736-2747.	5.6	18
90	In situ evaluation of the microstructure evolution during rapid hardening of an Al–2.5Cu–1.5Mg (wt.%) alloy. Acta Materialia, 2011, 59, 2918-2927.	7.9	77

#	Article	IF	CITATIONS
91	Evolution of Precipitate Microstructure During Creep of an AA7449 T7651 Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3934-3940.	2.2	27
92	On the validity of simple precipitate size measurements by small-angle scattering in metallic systems. Journal of Applied Crystallography, 2011, 44, 343-352.	4.5	85
93	Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering. Acta Materialia, 2011, 59, 462-472.	7.9	198
94	A combined approach to microstructure mapping of an Al–Li AA2199 friction stir weld. Acta Materialia, 2011, 59, 3002-3011.	7.9	115
95	Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy. Acta Materialia, 2011, 59, 3621-3635.	7.9	216
96	Mechanical properties of low carbon steel hardened by the Fe ₂ SiTi phase at high volume fraction. Journal of Physics: Conference Series, 2010, 240, 012095.	0.4	6
97	Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Materialia, 2010, 58, 248-260.	7.9	345
98	Global Techniques for Characterizing Phase Transformations – A Tutorial Review. Advanced Engineering Materials, 2010, 12, 433-446.	3.5	3
99	Experimental investigation of microstructure and ageing behaviour of bulk Zn–(1–18)wt% Al–(0–0.06)wt% Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7901-7911.	5.6	11
100	Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Materialia, 2010, 58, 4814-4826.	7.9	264
101	Mesoscopic modelling of precipitation: A tool for extracting physical parameters of phase transformations in metallic alloys. Comptes Rendus Physique, 2010, 11, 236-244.	0.9	13
102	Mapping the microstructure of a friction-stir welded (FSW) Al-Li-Cu alloy. Journal of Physics: Conference Series, 2010, 247, 012034.	0.4	8
103	Understanding the mechanical properties of 2198 Al-Li-Cu alloy in relation with the intra-granular and inter-granular precipitate microstructure. Journal of Physics: Conference Series, 2010, 240, 012096.	0.4	4
104	Influence of cooling rate on the precipitation microstructure in a medium strength Al–Zn–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 501, 133-139.	5.6	101
105	Influence of the silicon content on the mechanical properties of AA6xxx laser welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 506, 157-164.	5.6	17
106	Quantitative characterization of the microstructure of an electron-beam welded medium strength Al–Zn–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 361-368.	5.6	28
107	The strength of friction stir welded and friction stir processed aluminium alloys. Scripta Materialia, 2008, 58, 377-382.	5.2	134
108	Two- and three-dimensional characterizations of hot tears in a Al–Mg–Si alloy laser weld. Scripta Materialia, 2008, 59, 324-327.	5.2	18

#	Article	IF	CITATIONS
109	The influence of plastic instabilities on the mechanical properties of a high-manganese austenitic FeMnC steel. International Journal of Materials Research, 2008, 99, 734-738.	0.3	71
110	Hot Tearing During Laser Butt Welding of 6xxx Aluminium Alloys: Process Optimisation and 2D/3D Characterisation of Hot Tears. , 2008, , 241-255.		2
111	Hardening precipitation and mechanical properties in new Mg–Mn–Y–Gd alloys. International Journal of Materials Research, 2008, 99, 168-177.	0.3	3
112	Electrochemical Testing of Exfoliation Corrosion Sensitivity of Aluminum Alloys. ECS Transactions, 2007, 3, 285-293.	0.5	4
113	The Deformation Mechanisms of TWIP Steels (Fe-Mn-C) Viewed by X-Ray Diffraction. Solid State Phenomena, 2007, 130, 53-56.	0.3	3
114	Modelling the precipitation of NbC on dislocations in α-Fe. Acta Materialia, 2007, 55, 1255-1266.	7.9	104
115	In situ small-angle scattering study of the precipitation kinetics in an Al–Zr–Sc alloy. Acta Materialia, 2007, 55, 2775-2783.	7.9	83
116	Contribution of small-angle X-ray scattering to microstructural investigation of newly developed Mg–rare earth alloys for structural applications. Journal of Applied Crystallography, 2007, 40, s126-s131.	4.5	2
117	3DAP measurements of Al content in different types of precipitates in aluminium alloys. Surface and Interface Analysis, 2007, 39, 206-212.	1.8	61
118	Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire). Optics and Laser Technology, 2007, 39, 652-661.	4.6	206
119	TEM study of NbC heterogeneous precipitation in ferrite. Philosophical Magazine, 2006, 86, 4271-4284.	1.6	39
120	A small-angle neutron scattering study of fine-scale NbC precipitation kinetics in the α-Fe–Nb–C system. Journal of Applied Crystallography, 2006, 39, 473-482.	4.5	77
121	Complex precipitation pathways in multicomponent alloys. Nature Materials, 2006, 5, 482-488.	27.5	272
122	Microstructure mapping in friction stir welds of 7449 aluminium alloy using SAXS. Acta Materialia, 2006, 54, 4793-4801.	7.9	104
123	Non-isothermal tensile tests during solidification of Al–Mg–Si–Cu alloys: Mechanical properties in relation to the phenomenon of hot tearing. Acta Materialia, 2006, 54, 5209-5220.	7.9	36
124	Comparative study on local and global mechanical properties of 2024 T351, 2024 T6 and 5251 O friction stir welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 415, 162-170.	5.6	97
125	On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 441, 39-48.	5.6	83
126	Temperature control in laser brazing of a steel/aluminium assembly using thermographic measurements. NDT and E International, 2006, 39, 272-276.	3.7	53

#	Article	IF	CITATIONS
127	Rheological behavior of Al-Mg-Si-Cu alloys in the mushy state obtained by partial remelting and partial solidification at high cooling rate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1459-1467.	2.2	31
128	Characterisation and Modelling of Non-Isothermal Precipitation in Metallic Systems. Advanced Engineering Materials, 2006, 8, 1236-1239.	3.5	3
129	Understanding the Compromise between Strength and Exfoliation Corrosion in High Strength 7000 Alloys. Materials Science Forum, 2006, 519-521, 455-460.	0.3	18
130	Mechanical Behaviour in the Mushy State during Isothermal Tensile Testing. Materials Science Forum, 2006, 519-521, 1877-1882.	0.3	1
131	Use of Small-Angle X-Ray Scattering for the Characterisation of Precipitates in Aluminium Alloys. Materials Science Forum, 2006, 519-521, 1349-1354.	0.3	4
132	Precipitation Strengthening in AA7449 Aluminium Alloy: Understanding the Relationship between Microstructure, Yield Strength and Strain Hardening. Materials Science Forum, 2006, 519-521, 991-996.	0.3	5
133	Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Materialia, 2005, 53, 2447-2458.	7.9	312
134	Characterisation of the composition and volume fraction of η′ and η precipitates in an Al–Zn–Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy. Acta Materialia, 2005, 53, 2881-2892.	7.9	205
135	Microstructure of butt laser joints of aluminium alloy 6056 sheets with an AS12 filler. Materials Science and Technology, 2005, 21, 1329-1336.	1.6	11
136	Low-temperature solubility of copper in iron: experimental study using thermoelectric power, small angle X-ray scattering and tomographic atom probe. Philosophical Magazine, 2005, 85, 2197-2210.	1.6	120
137	Low Temperature Solubility Limit of Copper in Iron. Materials Science Forum, 2005, 500-501, 631-638.	0.3	7
138	Study of precipitation kinetics: towards non-isothermal and coupled phenomena. Philosophical Magazine, 2005, 85, 3091-3112.	1.6	26
139	Laser brazing of steel-aluminum assembly. , 2004, , .		4
140	Quantitative characterization and precipitation kinetics: towards the non-isothermal precipitation and the coupled phenomena. Revue De Metallurgie, 2004, 101, 361-379.	0.3	1
141	Characterisation of precipitation microstructures in aluminium alloys 7040 and 7050 and their relationship to mechanical behaviour. Materials Science and Technology, 2004, 20, 567-576.	1.6	70
142	Precipitate microstructures and resulting properties of Al-Zn-Mg metal inert gas-weld heat-affected zones. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1437-1448.	2.2	30
143	A model for predicting fracture mode and toughness in 7000 series aluminium alloys. Acta Materialia, 2004, 52, 2529-2540.	7.9	95
144	The interaction of plasticity and diffusion controlled precipitation reactions. Scripta Materialia, 2003, 49, 927-932.	5.2	70

#	Article	IF	CITATIONS
145	Grain boundary versus transgranular ductile failure. Journal of the Mechanics and Physics of Solids, 2003, 51, 637-665.	4.8	125
146	On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 356, 326-336.	5.6	251
147	Microscopic modelling of simultaneous two-phase precipitation: application to carbide precipitation in low-carbon steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 360, 214-219.	5.6	47
148	Hardening precipitation in a Mg–4Y–3RE alloy. Acta Materialia, 2003, 51, 5335-5348.	7.9	323
149	Characterisation and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments. Acta Materialia, 2003, 51, 6077-6094.	7.9	247
150	In-situ small-angle X-ray scattering study of dynamic precipitation in an Al-Zn-Mg-Cu alloy. Philosophical Magazine, 2003, 83, 677-692.	1.6	69
151	Comparison of Precipitation Kinetics and Strengthening in an Fe-0.8%Cu Alloy and a 0.8% Cu-containing Low-carbon Steel. ISIJ International, 2003, 43, 1826-1832.	1.4	32
152	Precipitate Microstructure in the Heat-Affected Zone of Al-Zn-Mg MIG-Welds and Evolution during Post-Welding Heat Treatments. Materials Science Forum, 2002, 396-402, 1561-1566.	0.3	5
153	High temperature, high strain rate embrittlement of Al-Mg-Mn alloy: evidence of cleavage of an fcc alloy. Materials Science and Technology, 2002, 18, 1085-1091.	1.6	7
154	Microstructural Study of Laser Welds Al6056-AS12 in Relation with Hot Tearing. Materials Science Forum, 2002, 396-402, 1567-1572.	0.3	16
155	Examples of liquiq metal embrittlement in industrial aluminium alloys. European Physical Journal Special Topics, 2002, 12, 263-276.	0.2	2
156	Precipitation Kinetics and Strengthening of a Fe-0.8wt%Cu Alloy ISIJ International, 2001, 41, 196-205.	1.4	198
157	Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1635-1647.	2.2	215
158	Recent Developments in Small-Angle X-Ray Scattering for the Study of Metals and Polymers. Advanced Engineering Materials, 2001, 3, 579.	3.5	11
159	High temperature cleavage fracture in 5383 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 583-586.	5.6	17
160	The deformation behaviour of AA6111 as a function of temperature and precipitation state. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 461-465.	5.6	35
161	A comparative study of precipitate composition and volume fraction in an Al–Zn–Mg alloy using tomographic atom probe and small-angle X-ray scattering. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 2391-2414.	0.6	63
162	A comparative study of precipitate composition and volume fraction in an Al–Zn–Mg alloy using tomographic atom probe and small-angle X-ray scattering. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 2391-2414.	0.6	1

#	Article	IF	CITATIONS
163	Strain hardening rate in relation to microstructure in precipitation hardening materials. European Physical Journal Special Topics, 2000, 10, Pr6-151-Pr6-156.	0.2	19
164	Characterization and modeling of precipitation kinetics in an Al–Zn–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 293, 267-274.	5.6	141
165	Influence of copper addition on precipitation kinetics and hardening in Al–Zn–Mg alloy. Materials Science and Technology, 1999, 15, 993-1000.	1.6	74
166	Low-temperature dynamic precipitation in a supersaturated AI-Zn-Mg alloy and related strain hardening. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 2485-2504.	0.6	80
167	Characterization and Modeling of Precipitation Kinetics in Aluminium 7000 Alloys. Materials Research Society Symposia Proceedings, 1999, 578, 481.	0.1	Ο
168	Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Materialia, 1998, 47, 281-292.	7.9	340
169	Influence of predeformation and agEing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Materialia, 1998, 47, 293-305.	7.9	537
170	Nature and distribution of quench-induced precipitation in an Al-Zn-Mg-Cu Alloy. Scripta Materialia, 1998, 39, 1517-1522.	5.2	83
171	Influence of quench and heating rates on the ageing response of an Al–Zn–Mg–(Zr) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 251, 200-207.	5.6	162
172	Influence of characteristic scales: from materials modelling to materials selection. European Physical Journal Special Topics, 1998, 08, Pr4-3-Pr4-12.	0.2	2
173	Influence of second-phase morphology and topology on mechanical and fracture properties of Al-Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236, 481-484.	5.6	24
174	Anomalous strain hardening behaviour of a supersaturated Al-Zn-Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236, 477-480.	5.6	11
175	Study of large strain deformation of dilute solid solutions of Al-Cu using channel-die compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 207, 143-152.	5.6	29
176	Effect of Process Parameters on the Ageing of an Al-6% Zn-2.3% Mg Alloy. Materials Science Forum, 1996, 217-222, 1281-1286.	0.3	4
177	Large Strain Deformation of Al-Cu Solid Solutions Using Channel-Die Compression. Key Engineering Materials, 1995, 97-98, 341-346.	0.4	Ο
178	Effect of Dislocations on Precipitation of Nb-C in α-Fe. Materials Science Forum, 0, 539-543, 4161-4166.	0.3	2
179	Precipitation Sequences in Two Al-Li-Cu Alloys. Solid State Phenomena, 0, 172-174, 267-272.	0.3	5
180	The Influence of Mg and Ag on the Precipitation Kinetics and the Formation of the T ₁ Phase in Al-Cu-Li Alloys. Materials Science Forum, 0, 794-796, 945-950.	0.3	8

#	Article	IF	CITATIONS
181	Complementarity of Atom Probe, Small Angle Scattering and Differential Scanning Calorimetry for the Study of Precipitation in Aluminium Alloys. Materials Science Forum, 0, 794-796, 926-932.	0.3	10
182	Dynamic Interactions between Precipitation and Plastic Deformation in Aluminium Alloys. Materials Science Forum, 0, 794-796, 1133-1140.	0.3	1