
Feng Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5285815/publications.pdf Version: 2024-02-01

FENC RAO

#	Article	IF	CITATIONS
1	IP6-assisted CSN-COP1 competition regulates a CRL4-ETV5 proteolytic checkpoint to safeguard glucose-induced insulin secretion. Nature Communications, 2021, 12, 2461.	12.8	11
2	Role of NEDD8 and neddylation dynamics in DNA damage response. Genome Instability & Disease, 2021, 2, 139-149.	1.1	1
3	5-IP7 is a GPCR messenger mediating neural control of synaptotagmin-dependent insulin exocytosis and glucose homeostasis. Nature Metabolism, 2021, 3, 1400-1414.	11.9	13
4	Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate–mediated regulation of cullin–RING ligase and sensitize cancer cells to MLN4924/pevonedistat. Journal of Biological Chemistry, 2020, 295, 10281-10292.	3.4	8
5	Cullin-RING Ligase Regulation by the COP9 Signalosome: Structural Mechanisms and New Physiologic Players. Advances in Experimental Medicine and Biology, 2020, 1217, 47-60.	1.6	13
6	Basis for metabolite-dependent Cullin-RING ligase deneddylation by the COP9 signalosome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4117-4124.	7.1	27
7	Are Inositol Polyphosphates the Missing Link in Dynamic Cullin RING Ligase Regulation by the COP9 Signalosome?. Biomolecules, 2019, 9, 349.	4.0	9
8	Inositol Polyphosphate Multikinase Inhibits Angiogenesis via Inositol Pentakisphosphate-Induced HIF-1α Degradation. Circulation Research, 2018, 122, 457-472.	4.5	14
9	TRPV1 is a physiological regulator of μ-opioid receptors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13561-13566.	7.1	30
10	Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3503-3508.	7.1	33
11	Inositol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1773-1778.	7.1	84
12	Inositol Pyrophosphates Mediate the DNA-PK/ATM-p53 Cell Death Pathway by Regulating CK2 Phosphorylation of Tti1/Tel2. Molecular Cell, 2014, 54, 119-132.	9.7	103
13	Inositol hexakisphosphate kinase-1 mediates assembly/disassembly of the CRL4–signalosome complex to regulate DNA repair and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16005-16010.	7.1	46
14	Sulfhydration mediates neuroprotective actions of parkin. Nature Communications, 2013, 4, 1626.	12.8	265
15	Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16181-16186.	7.1	33
16	Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20575-20580.	7.1	39
17	Solution Structure of the PAS Domain of a Thermophilic YybT Protein Homolog Reveals a Potential Ligand-binding Site. Journal of Biological Chemistry, 2013, 288, 11949-11959.	3.4	27
18	Inositol Polyphosphate Multikinase Is a Coactivator of p53-Mediated Transcription and Cell Death. Science Signaling, 2013, 6, ra22.	3.6	45

Feng Rao

#	Article	IF	CITATIONS
19	Structural Insights into the Regulatory Mechanism of the Response Regulator RocR from Pseudomonas aeruginosa in Cyclic Di-GMP Signaling. Journal of Bacteriology, 2012, 194, 4837-4846.	2.2	57
20	ATP Binding to p97/VCP D1 Domain Regulates Selective Recruitment of Adaptors to Its Proximal N-Domain. PLoS ONE, 2012, 7, e50490.	2.5	23
21	Medaka <i>tert</i> produces multiple variants with differential expression during differentiation <i>in vitro</i> and <i>in vivo</i> . International Journal of Biological Sciences, 2011, 7, 426-439.	6.4	14
22	Unusual Heme-Binding PAS Domain from YybT Family Proteins. Journal of Bacteriology, 2011, 193, 1543-1551.	2.2	60
23	YybT Is a Signaling Protein That Contains a Cyclic Dinucleotide Phosphodiesterase Domain and a GGDEF Domain with ATPase Activity. Journal of Biological Chemistry, 2010, 285, 473-482.	3.4	231
24	2′,3′-cAMP hydrolysis by metal-dependent phosphodiesterases containing DHH, EAL, and HD domains is non-specific: Implications for PDE screening. Biochemical and Biophysical Research Communications, 2010, 398, 500-505.	2.1	28
25	Expression, purification and characterization of the acyl carrier protein phosphodiesterase from Pseudomonas Aeruginosa. Protein Expression and Purification, 2010, 71, 132-138.	1.3	23
26	The Functional Role of a Conserved Loop in EAL Domain-Based Cyclic di-GMP-Specific Phosphodiesterase. Journal of Bacteriology, 2009, 191, 4722-4731.	2.2	100
27	Expression, purification and preliminary crystallographic analysis of <i>Pseudomonas aeruginosa</i> RocR protein. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1035-1038.	0.7	4
28	Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase. Analytical Biochemistry, 2009, 389, 138-142.	2.4	83
29	A Flavin Cofactor-Binding PAS Domain Regulates c-di-GMP Synthesis in <i>Ax</i> DGC2 from <i>Acetobacter xylinum</i> . Biochemistry, 2009, 48, 10275-10285.	2.5	79
30	Catalytic Mechanism of Cyclic Di-GMP-Specific Phosphodiesterase: a Study of the EAL Domain-Containing RocR from <i>Pseudomonas aeruginosa</i> . Journal of Bacteriology, 2008, 190, 3622-3631.	2.2	224