
Eldad Zacksenhaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/528549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypophosphorylated pRb knockâ€in mice exhibit hallmarks of aging and vitamin Câ€preventable diabetes. EMBO Journal, 2022, 41, e106825.	7.8	13
2	FLI1 regulates inflammation-associated genes to accelerate leukemogenesis. Cellular Signalling, 2022, 92, 110269.	3.6	5
3	Targeting an MDM2/MYC Axis to Overcome Drug Resistance in Multiple Myeloma. Cancers, 2022, 14, 1592.	3.7	8
4	Current insights into the role of Fli-1 in hematopoiesis and malignant transformation. Cellular and Molecular Life Sciences, 2022, 79, 163.	5.4	9
5	A critical ETV4/Twist1/Vimentin axis in Ha-RAS-induced aggressive breast cancer. Cancer Gene Therapy, 2022, 29, 1590-1599.	4.6	2
6	A racemosin B derivative, C25, suppresses breast cancer growth via lysosomal membrane permeabilization and inhibition of autophagic flux. Biochemical Pharmacology, 2022, 201, 115060.	4.4	1
7	Progression to Metastasis of Solid Cancer. Cancers, 2021, 13, 717.	3.7	8
8	FLI1 Induces Megakaryopoiesis Gene Expression Through WAS/WIP-Dependent and Independent Mechanisms; Implications for Wiskott-Aldrich Syndrome. Frontiers in Immunology, 2021, 12, 607836.	4.8	14
9	Inhibition of eEF2K synergizes with glutaminase inhibitors or 4EBP1 depletion to suppress growth of triple-negative breast cancer cells. Scientific Reports, 2021, 11, 9181.	3.3	6
10	Ubash3b promotes TPA-mediated suppression of leukemogenesis through accelerated downregulation of PKCl´ protein. Biochimie, 2021, 184, 8-17.	2.6	3
11	SMAD1 as a biomarker and potential therapeutic target in drug-resistant multiple myeloma. Biomarker Research, 2021, 9, 48.	6.8	8
12	ERK activation via A1542/3 limonoids attenuates erythroleukemia through transcriptional stimulation of cholesterol biosynthesis genes. BMC Cancer, 2021, 21, 680.	2.6	8
13	Single allele loss-of-function mutations select and sculpt conditional cooperative networks in breast cancer. Nature Communications, 2021, 12, 5238.	12.8	8
14	A C21-steroidal derivative suppresses T-cell lymphoma in mice by inhibiting SIRT3 via SAP18-SIN3. Communications Biology, 2020, 3, 732.	4.4	8
15	Modeling germline mutations in pineoblastoma uncovers lysosome disruption-based therapy. Nature Communications, 2020, 11, 1825.	12.8	21
16	MARCKS inhibition cooperates with autophagy antagonists to potentiate the effect of standard therapy against drug-resistant multiple myeloma. Cancer Letters, 2020, 480, 29-38.	7.2	12
17	Erythropoietin Signaling in the Microenvironment of Tumors and Healthy Tissues. Advances in Experimental Medicine and Biology, 2020, 1223, 17-30.	1.6	12
18	FLI1 promotes protein translation via the transcriptional regulation of MKNK1 expression. International Journal of Oncology, 2020, 56, 430-438.	3.3	2

ELDAD ZACKSENHAUS

#	Article	IF	CITATIONS
19	Selective ERK1/2 agonists isolated from Melia azedarach with potent anti-leukemic activity. BMC Cancer, 2019, 19, 764.	2.6	12
20	A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt signaling. Breast Cancer Research, 2019, 21, 18.	5.0	37
21	Identification of diterpenoid compounds that interfere with Fli-1 DNA binding to suppress leukemogenesis. Cell Death and Disease, 2019, 10, 117.	6.3	29
22	Molecular stratification within triple-negative breast cancer subtypes. Scientific Reports, 2019, 9, 19107.	3.3	78
23	Identification of CDC25 as a Common Therapeutic Target for Triple-Negative Breast Cancer. Cell Reports, 2018, 23, 112-126.	6.4	58
24	Novel racemosin B derivatives as new therapeutic agents for aggressive breast cancer. Bioorganic and Medicinal Chemistry, 2018, 26, 6096-6104.	3.0	14
25	Novel flavaglineâ€like compounds with potent Fliâ€1 inhibitory activity suppress diverse types of leukemia. FEBS Journal, 2018, 285, 4631-4645.	4.7	22
26	Cdh1 and Pik3ca Mutations Cooperate to Induce Immune-Related Invasive Lobular Carcinoma of the Breast. Cell Reports, 2018, 25, 702-714.e6.	6.4	47
27	Associations Between XPD Lys751Gln Polymorphism and Leukemia: A Meta-Analysis. Frontiers in Genetics, 2018, 9, 218.	2.3	6
28	CDC25 as a common therapeutic target for triple-negative breast cancer - the challenges ahead. Molecular and Cellular Oncology, 2018, 5, e1481814.	0.7	9
29	Marcks Inhibition By a Peptide Inhibitor, MPS, Cooperates with Bortezomib to Effectively Eliminate Drug Resistance in Multiple Myeloma. Blood, 2018, 132, 1936-1936.	1.4	2
30	Mitochondrial OXPHOS Induced by RB1 Deficiency in Breast Cancer: Implications for Anabolic Metabolism, Stemness, and Metastasis. Trends in Cancer, 2017, 3, 768-779.	7.4	98
31	ldentification of cell proliferation, immune response and cell migration as critical pathways in a prognostic signature for HER2+:ERα- breast cancer. PLoS ONE, 2017, 12, e0179223.	2.5	9
32	A screen for Fli-1 transcriptional modulators identifies PKC agonists that induce erythroid to megakaryocytic differentiation and suppress leukemogenesis. Oncotarget, 2017, 8, 16728-16743.	1.8	22
33	Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death and Disease, 2016, 7, e2560-e2560.	6.3	22
34	Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer. Breast Cancer Research, 2016, 18, 9.	5.0	20
35	Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways. PLoS ONE, 2015, 10, e0126466.	2.5	29
36	Suppression of Her2/Neu mammary tumor development in <i>mda-7/IL-24</i> transgenic mice. Oncotarget, 2015, 6, 36943-36954.	1.8	14

ELDAD ZACKSENHAUS

#	Article	IF	CITATIONS
37	MDA-7/IL-24 functions as a tumor suppressor gene <i>in vivo</i> in transgenic mouse models of breast cancer. Oncotarget, 2015, 6, 36928-36942.	1.8	34
38	Timing is everything: Rb's choice in islet-cell fate. Cell Cycle, 2014, 13, 873-874.	2.6	0
39	Combined deletion of <scp>P</scp> ten and p53 in mammary epithelium accelerates tripleâ€negative breast cancer with dependency on e <scp>EF</scp> 2 <scp>K</scp> . EMBO Molecular Medicine, 2014, 6, 1542-1560.	6.9	91
40	Rb and p107 are required for alpha cell survival, beta cell cycle control and glucagon-like peptide-1 action. Diabetologia, 2014, 57, 2555-2565.	6.3	10
41	shRNA Kinome Screen Identifies TBK1 as a Therapeutic Target for HER2+ Breast Cancer. Cancer Research, 2014, 74, 2119-2130.	0.9	32
42	Retinoblastoma tumor suppressor protein in pancreatic progenitors controls α- and β-cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14723-14728.	7.1	17
43	High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: Interaction with IQ motif-containing factors. Cell Cycle, 2013, 12, 3013-3024.	2.6	46
44	RB1 Status in Triple Negative Breast Cancer Cells Dictates Response to Radiation Treatment and Selective Therapeutic Drugs. PLoS ONE, 2013, 8, e78641.	2.5	66
45	A Tumor initiating cell-enriched prognostic signature for HER2+:ERαâ^' breast cancer; rationale, new features, controversies and future directions. Oncotarget, 2013, 4, 1317-1328.	1.8	8
46	Seventeen-gene signature from enriched Her2/Neu mammary tumor-initiating cells predicts clinical outcome for human HER2 ⁺ :ERα ^{â^²} breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5832-5837.	7.1	67
47	Critical Role of the Rb Family in Myoblast Survival and Fusion. PLoS ONE, 2011, 6, e17682.	2.5	10
48	Multiple pathways counteract cell death induced by RB1 loss: Implications for cancer. Cell Cycle, 2011, 10, 1533-1539.	2.6	18
49	Direct and indirect effects of the pRb tumor suppressor on autophagy. Autophagy, 2011, 7, 544-546.	9.1	11
50	RB1 and p53 at the crossroad of EMT and triple-negative breast cancer. Cell Cycle, 2011, 10, 1563-1570.	2.6	95
51	Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. Journal of Clinical Investigation, 2010, 120, 3296-3309.	8.2	129
52	Identification of Tumorsphere- and Tumor-Initiating Cells in HER2/Neu-Induced Mammary Tumors. Cancer Research, 2007, 67, 8671-8681.	0.9	149
53	Conserved and specific functions of mammalian ssu72. Nucleic Acids Research, 2005, 33, 464-477.	14.5	29
54	Alternative Reading Frame Supports An Alternative Model for Retinoblastoma. Cell Cycle, 2003, 2, 27-30.	2.6	3

#	Article	IF	CITATIONS
55	Activation of retinoblastoma protein in mammary gland leads to ductal growth suppression, precocious differentiation, and adenocarcinoma. Journal of Cell Biology, 2002, 156, 185-198.	5.2	58
56	Coordinated expression of Rb gene family in the mammary gland. Mechanisms of Development, 2002, 119, S39-S42.	1.7	6
57	E2F1 mediates ectopic proliferation and stage-specific p53-dependent apoptosis but not aberrant differentiation in the ocular lens of Rb deficient fetuses. Oncogene, 2000, 19, 6065-6073.	5.9	41
58	E2F1 and p53 Are Dispensable, whereas p21Waf1/Cip1 Cooperates with Rb to Restrict Endoreduplication and Apoptosis during Skeletal Myogenesis. Developmental Biology, 2000, 227, 28-41.	2.0	29
59	Nuclear localization conferred by the pocket domain of the retinoblastoma gene product. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1451, 288-296.	4.1	16
60	The retinoblastoma gene family is differentially expressed during embryogenesis. Oncogene, 1997, 14, 1789-1797.	5.9	131
61	Identification of human gene complementing ts AIS9 mouse L-cell defect in DNA replication following DNA-mediated gene transfer. Somatic Cell and Molecular Genetics, 1988, 14, 371-379.	0.7	7