

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5284629/publications.pdf Version: 2024-02-01

CVDII DODIEL

#	Article	IF	CITATIONS
1	Highly Efficient Thermally Activated Delayed Fluorescence via an Unconjugated Donor–Acceptor System Realizing EQE of Over 30%. Advanced Materials, 2020, 32, e2003885.	21.0	148
2	Dispirofluorene–Indenofluorene Derivatives as New Building Blocks for Blue Organic Electroluminescent Devices and Electroactive Polymers. Chemistry - A European Journal, 2007, 13, 10055-10069.	3.3	131
3	<i>orthoâ€; metaâ€</i> , and <i>para</i> â€Dihydroindenofluorene Derivatives as Host Materials for Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2015, 54, 1176-1180.	13.8	129
4	Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design. Journal of Materials Chemistry, 2012, 22, 7149.	6.7	103
5	Zinc Tetraphenylporphyrin as High Performance Visible Light Photoinitiator of Cationic Photosensitive Resins for LED Projector 3D Printing Applications. Macromolecules, 2017, 50, 746-753.	4.8	99
6	C1â€Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for Highâ€Performance Blue Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2019, 58, 3848-3853.	13.8	95
7	Dependence of the Properties of Dihydroindenofluorene Derivatives on Positional Isomerism: Influence of the Ring Bridging. Angewandte Chemie - International Edition, 2013, 52, 14147-14151.	13.8	90
8	Structure–property relationship of 4-substituted-spirobifluorenes as hosts for phosphorescent organic light emitting diodes: an overview. Journal of Materials Chemistry C, 2017, 5, 3869-3897.	5.5	89
9	Spirobifluorene Regioisomerism: A Structure–Property Relationship Study. Chemistry - A European Journal, 2017, 23, 7719-7727.	3.3	85
10	New generations of spirobifluorene regioisomers for organic electronics: tuning electronic properties with the substitution pattern. Chemical Communications, 2019, 55, 14238-14254.	4.1	83
11	Modulation of circularly polarized luminescence through excited-state symmetry breaking and interbranched exciton coupling in helical push–pull organic systems. Chemical Science, 2020, 11, 567-576.	7.4	79
12	Synthesis and Properties of a Blue Bipolar Indenofluorene Emitter Based on a D-Ï€-A Design. Organic Letters, 2011, 13, 4418-4421.	4.6	77
13	Blue Singleâ€Layer Organic Lightâ€Emitting Diodes Using Fluorescent Materials: A Molecular Design View Point. Advanced Functional Materials, 2020, 30, 1910040.	14.9	77
14	DiSpiroXanthene-IndenoFluorene: A New Blue Emitter for Nondoped Organic Light Emitting Diode Applications. Organic Letters, 2010, 12, 452-455.	4.6	76
15	9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs. Journal of Materials Chemistry C, 2014, 2, 4156-4166.	5.5	75
16	New 3Ï€â€⊋Spiro Ladderâ€Type Phenylene Materials: Synthesis, Physicochemical Properties and Applications in OLEDs. Chemistry - A European Journal, 2008, 14, 11328-11342.	3.3	73
17	Spiro-configured phenyl acridine thioxanthene dioxide as a host for efficient PhOLEDs. Chemical Communications, 2015, 51, 1313-1315.	4.1	69
18	Incorporation of Spiroxanthene Units in Blueâ€Emitting Oligophenylene Frameworks: A New Molecular Design for OLED Applications. Chemistry - A European Journal, 2011, 17, 12631-12645.	3.3	65

#	Article	IF	CITATIONS
19	Violetâ€toâ€Blue Tunable Emission of Arylâ€Substituted Dispirofluorene–Indenofluorene Isomers by Conformationallyâ€Controllable Intramolecular Excimer Formation. Chemistry - A European Journal, 2011, 17, 10272-10287.	3.3	65
20	Dispirofluorene-indenofluorene (DSFIF):  Synthesis, Electrochemical, and Optical Properties of a Promising New Family of Luminescent Materials. Organic Letters, 2006, 8, 257-260.	4.6	59
21	4-Pyridyl-9,9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs. Journal of Physical Chemistry C, 2015, 119, 5790-5805.	3.1	59
22	Dihydroindenofluorene Positional Isomers. Accounts of Chemical Research, 2018, 51, 1818-1830.	15.6	59
23	Evolution of pure hydrocarbon hosts: simpler structure, higher performance and universal application in RGB phosphorescent organic light-emitting diodes. Chemical Science, 2020, 11, 4887-4894.	7.4	58
24	Spirobifluorene-2,7-dicarbazole-4′-phosphine Oxide as Host for High-Performance Single-Layer Green Phosphorescent OLED Devices. Organic Letters, 2015, 17, 4682-4685.	4.6	56
25	Properties modulation of organic semi-conductors based on a donor-spiro-acceptor (D-spiro-A) molecular design: new host materials for efficient sky-blue PhOLEDs. Journal of Materials Chemistry C, 2015, 3, 9701-9714.	5.5	55
26	Electroactive films of poly(tetraphenylporphyrins) with reduced bandgap. Journal of Electroanalytical Chemistry, 2006, 597, 19-27.	3.8	53
27	Donor/Acceptor Dihydroindeno[1,2â€ <i>a</i>]fluorene and Dihydroindeno[2,1â€ <i>b</i>]fluorene: Towards New Families of Organic Semiconductors. Chemistry - A European Journal, 2015, 21, 9426-9439.	3.3	53
28	New Dispiro Compounds:  Synthesis and Properties. Organic Letters, 2008, 10, 373-376.	4.6	52
29	(2,1â€ <i>a</i>)â€Indenofluorene Derivatives: Syntheses, Xâ€ray Structures, Optical and Electrochemical Properties. Chemistry - A European Journal, 2010, 16, 13646-13658.	3.3	52
30	Blue Emitting 3 ï€â€"2 Spiro Terfluorene–Indenofluorene Isomers: A Structure–Properties Relationsl Study. Chemistry - A European Journal, 2011, 17, 14031-14046.	nip 8.3	51
31	Electron-Rich 4-Substituted Spirobifluorenes: Toward a New Family of High Triplet Energy Host Materials for High-Efficiency Green and Sky Blue Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 6194-6206.	8.0	51
32	Designing Host Materials for the Emissive Layer of Single‣ayer Phosphorescent Organic Lightâ€Emitting Diodes: Toward Simplified Organic Devices. Advanced Functional Materials, 2021, 31, 2010547.	14.9	51
33	Tuning the Optical Properties of Aryl-Substituted Dispirofluorene-Indenofluorene Isomers through Intramolecular Excimer Formation. Organic Letters, 2009, 11, 4794-4797.	4.6	50
34	A 9,9′-spirobifluorene based Metal–Organic Framework: synthesis, structure analysis and gas sorption properties. Journal of Materials Chemistry, 2011, 21, 18715.	6.7	49
35	Modulation of the Physicochemical Properties of Donor–Spiro–Acceptor Derivatives through Donor Unit Planarisation: Phenylacridine versus Indoloacridine—New Hosts for Green and Blue Phosphorescent Organic Lightâ€Emitting Diodes (PhOLEDs). Chemistry - A European Journal, 2016, 22,	3.3	49
36	Organic Cross-Linked Electropolymers as Supported Oxidation Catalysts:Â Poly((tetrakis(9,9â€~-spirobifluorenyl)porphyrin)manganese) Films. Inorganic Chemistry, 2004, 43, 5086-5095.	4.0	48

#	Article	IF	CITATIONS
37	A robust pure hydrocarbon derivative based on the (2,1-b)-indenofluorenyl core with high triplet energy level. Chemical Communications, 2011, 47, 11703.	4.1	48
38	The structure–property relationship study of electron-deficient dihydroindeno[2,1-b]fluorene derivatives for n-type organic field effect transistors. Journal of Materials Chemistry C, 2015, 3, 5742-5753.	5.5	46
39	9 <i>H</i> â€Quinolino[3,2,1â€ <i>k</i>]phenothiazine: A New Electronâ€Rich Fragment for Organic Electronics. Chemistry - A European Journal, 2016, 22, 17930-17935.	3.3	46
40	Anodic oxidation and physicochemical properties of various porphyrin-fluorenes or -spirobifluorenes: Synthesis of new polymers for heterogeneous catalytic reactions. Journal of Electroanalytical Chemistry, 2005, 583, 92-103.	3.8	44
41	Oxidative Rearrangement of Indoles:Â A New Approach to the EFHG-Tetracyclic Core of Diazonamide A. Journal of Organic Chemistry, 2007, 72, 2978-2987.	3.2	43
42	Modulation of the Electronic Properties of 3ï€-2spiro Compounds Derived from Bridged Oligophenylenes: A Structure–Property Relationship. Journal of Organic Chemistry, 2013, 78, 886-898.	3.2	43
43	2-Substituted vs 4-substituted-9,9′-spirobifluorene host materials for green and blue phosphorescent OLEDs: a structure–property relationship study. Tetrahedron, 2014, 70, 6337-6351.	1.9	43
44	Poly(ruthenium carbonyl spirobifluorenylporphyrin): a new polymer used as a catalytic device for carbene transferElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b306021g/. Chemical Communications, 2003, , 2308.	4.1	42
45	Synthesis and stereochemical studies of di and tetra 9,9′-spirobifluorene porphyrins: new building blocks for catalytic material. Tetrahedron, 2004, 60, 145-158.	1.9	42
46	Spirophenylacridineâ€2,7â€(diphenylphosphineoxide)â€fluorene: A Bipolar Host for Highâ€Efficiency Singleâ€Layer Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901225.	7.3	41
47	1-Carbazolyl Spirobifluorene: Synthesis, Structural, Electrochemical, and Photophysical Properties. Journal of Physical Chemistry C, 2019, 123, 19094-19104.	3.1	40
48	Encumbered DiSpiro[Fluorene–IndenoFluorene]: Mechanistic Insights. Chemistry - A European Journal, 2009, 15, 13304-13307.	3.3	39
49	Universal host materials for red, green and blue high-efficiency single-layer phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 16354-16367.	5.5	39
50	The diazo route to diazonamide A: studies on the tyrosine-derived fragment. Organic and Biomolecular Chemistry, 2005, 3, 3805.	2.8	38
51	Phenylboronic Acid Modified Anodes Promote Faster Biofilm Adhesion and Increase Microbial Fuel Cell Performances. Electroanalysis, 2013, 25, 601-605.	2.9	38
52	Thioxanthene and dioxothioxanthene dihydroindeno[2,1-b]fluorenes: synthesis, properties and applications in green and sky blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 1692-1703.	5.5	38
53	Asymmetric heterogeneous carbene transfer catalyzed by optically active ruthenium spirobifluorenylporphyrin polymers. Tetrahedron: Asymmetry, 2005, 16, 1463-1472.	1.8	37
54	Electron-Deficient Dihydroindaceno-Dithiophene Regioisomers for n-Type Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 8219-8232.	8.0	37

#		IF	CITATIONS
55	iodobenzene diacetate and iodosylbenzeneElectronic supplementary information (ESI) available: methods for synthesis of all compounds, physical data and detailed procedures for the catalytic oxidations. See http://www.rsc.org/suppdata/cc/b3/b301717f/. Chemical Communications, 2003, ,	4.1	35
56	Syntheses of manganese and iron tetraspirobifluorene porphyrins as new catalysts for oxidation of alkenes by hydrogen peroxide and iodosylbenzene. Tetrahedron Letters, 2003, 44, 1759-1761.	1.4	34
57	[4]Cycloâ€ <i>N</i> â€ethylâ€2,7â€carbazole: Synthesis, Structural, Electronic and Charge Transport Properties. Chemistry - A European Journal, 2019, 25, 7740-7748.	3.3	32
58	Chiral, Neutral, and Paramagnetic Gold Dithiolene Complexes Derived from Camphorquinone. European Journal of Inorganic Chemistry, 2009, 2009, 5413-5421.	2.0	29
59	Confining Nitrogen Inversion to Yield Enantiopure Quinolino[3,2,1â€k]Phenothiazine Derivatives. Advanced Functional Materials, 2018, 28, 1803140.	14.9	29
60	Comparative behaviour of the anodic oxidation of mono-, di- and tetra-arylporphyrins: Towards new electroactive materials with variable bandgaps. Journal of Electroanalytical Chemistry, 2008, 623, 204-214.	3.8	28
61	[4]Cyclofluorene: Unexpected Influence of Alkyl Chain Length. ChemPlusChem, 2018, 83, 874-880.	2.8	28
62	Pure Hydrocarbons: An Efficient Molecular Design Strategy for the Next Generation of Host Materials for Phosphorescent Organic Light-Emitting Diodes. Accounts of Materials Research, 2022, 3, 379-390.	11.7	26
63	An electron deficient dicyanovinylene-ladder-type pentaphenylene derivative for n-type organic field effect transistors. Journal of Materials Chemistry C, 2014, 2, 3292-3302.	5.5	25
64	Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Lightâ€Emitting Diodes: A New Molecular Design Approach. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
65	Influence of the gate bias stress on the stability of n-type organic field-effect transistors based on dicyanovinylene–dihydroindenofluorene semiconductors. Materials Chemistry Frontiers, 2018, 2, 1631-1641.	5.9	23
66	C1â€Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for Highâ€Performance Blue Phosphorescent OLEDs. Angewandte Chemie, 2019, 131, 3888-3893.	2.0	22
67	[<i>n</i>]â€Cycloâ€9,9â€dibutylâ€2,7â€fluorene (<i>n</i> =4, 5): Nanoring Size Influence in Carbonâ€Bridged Cycloâ€ <i>para</i> â€phenylenes. Angewandte Chemie - International Edition, 2020, 59, 11066-11072.	13.8	22
68	The remarkable effect of the 7-substituent in the diastereoselective oxidative rearrangement of indoles: Asymmetric synthesis of 3,3-disubstituted oxindoles. Chemical Communications, 2007, , 286-288.	4.1	21
69	Anodic oxidation of indenofluorene. Electrodeposition of electroactive poly(indenofluorene). New Journal of Chemistry, 2008, 32, 1259.	2.8	20
70	Luminescence modulation in liquid crystalline phases containing a dispiro[fluorene-9,11′-indeno[1,2-b]fluorene-12′,9′′-fluorene] core. Journal of Materials Chemistry C, 2, 4265-4275.	2051. \$,	20
71	Persistent Organic Room-Temperature Phosphorescence in Cyclohexane- <i>trans</i> -1,2-Bisphthalimide Derivatives: The Dramatic Impact of Heterochiral vs Homochiral interactions. Journal of Physical Chemistry Letters, 2020, 11, 6426-6434.	4.6	20
72	Anodic behaviour of mono- and bisdithiafulvenyl-9,9′-spirobifluorene: insertion of vinylogous TTF into the spirobifluorenyle framework. Journal of Electroanalytical Chemistry, 2002, 530, 33-39.	3.8	19

#	Article	IF	CITATIONS
73	[4]Cyclo- <i>N</i> -alkyl-2,7-carbazoles: Influence of the Alkyl Chain Length on the Structural, Electronic, and Charge Transport Properties. Journal of the American Chemical Society, 2021, 143, 8804-8820.	13.7	19
74	Design and electropolymerization of a new optically active iron tetraspirobifluorenyl porphyrin. Synthetic Metals, 2008, 158, 796-801.	3.9	18
75	On the nature of the electrode surface modification by cathodic reduction of tetraarylporphyrin diazonium salts in aqueous media. Electrochemistry Communications, 2012, 20, 167-170.	4.7	18
76	Modulation of the Electronic and Mesomorphic Properties of Alkynyl–Spirobifluorene Compounds as a Function of the Substitution Pattern. Journal of Physical Chemistry C, 2015, 119, 10564-10575.	3.1	18
77	Spirobifluorene Dimers: Understanding How The Molecular Assemblies Drive The Electronic Properties. Advanced Functional Materials, 2021, 31, 2104980.	14.9	18
78	Incorporation of spirobifluorene regioisomers in electron-donating molecular systems for organic solar cells. RSC Advances, 2016, 6, 25952-25959.	3.6	17
79	Modulating the Physical and Electronic Properties over Positional Isomerism: The Dispirofluorene–Dihydroindacenodithiophene (DSFâ€IDT) Family. Chemistry - A European Journal, 2017, 23, 17290-17303.	3.3	17
80	White-light electroluminescence from a layer incorporating a single fully-organic spiro compound with phosphine oxide substituents. Journal of Materials Chemistry C, 2020, 8, 14462-14468.	5.5	15
81	Are pure hydrocarbons the future of host materials for blue phosphorescent organic light-emitting diodes?. Materials Chemistry Frontiers, 2022, 6, 1246-1252.	5.9	15
82	<i>N</i> -Cyanoimine as an electron-withdrawing functional group for organic semiconductors: example of dihydroindacenodithiophene positional isomers. Journal of Materials Chemistry C, 2018, 6, 13197-13210.	5.5	14
83	Emerging organic electronics. Materials Chemistry Frontiers, 2020, 4, 2497-2498.	5.9	14
84	<i>Spiro</i> -configured dibenzosuberene compounds as deep-blue emitters for organic light-emitting diodes with a CIE <i>y</i> of 0.04. Materials Chemistry Frontiers, 2022, 6, 1803-1813.	5.9	14
85	The synthesis, physicochemical properties and anodic polymerization of a novel ladder pentaphenylene. Dyes and Pigments, 2009, 83, 339-347.	3.7	13
86	New electrochemically synthesized copolymers: poly(difluorenyl-ethylenes). Electrochemistry Communications, 2000, 2, 382-385.	4.7	12
87	Performance improvement of IF(CN2)2 meta based N-channel OTFTs and their integration into a stable CMOS inverter. Solid-State Electronics, 2017, 130, 49-56.	1.4	12
88	Influence of Fluorene and Spirobifluorene Regioisomerism on the Structure, Organization, and Permeation Properties of Monolayers. Journal of Physical Chemistry C, 2017, 121, 14228-14237.	3.1	12
89	A glance at violet LED sensitive photoinitiators based on the spiroxanthene scaffold. Journal of Applied Polymer Science, 2016, 133, .	2.6	11
90	A series of chiral metal–organic frameworks based on fluorene di- and tetra-carboxylates: syntheses, crystal structures and luminescence properties. CrystEngComm, 2017, 19, 2042-2056.	2.6	11

#	Article	IF	CITATIONS
91	Synthesis of a fluoresceine-derivatized fluorene and its electrogenerated copolymers with fluorene: New pH indicators. Synthetic Metals, 2008, 158, 790-795.	3.9	10
92	Direct Electron Transfer of Hemoglobin and Myoglobin at the Bare Glassy Carbon Electrode in an Aqueous BMI.BF ₄ Ionic‣iquid Mixture. ChemPhysChem, 2011, 12, 411-418.	2.1	10
93	2,5-Thiophene substituted spirobisiloles – synthesis, characterization, electrochemical properties and performance in bulk heterojunction solar cells. New Journal of Chemistry, 2013, 37, 464-473.	2.8	10
94	9,9′-Spirobifluorene based zinc coordination polymers: a study on linker geometry and topology. CrystEngComm, 2020, 22, 293-303.	2.6	10
95	Experimental and theoretical insights into the sequential oxidations of 3Ï€-2spiro molecules derived from oligophenylenes: A comparative study of 1,2-b-DiSpiroFluorene-IndenoFluorene versus 1,2-b-DiSpiroFluorene(tert-butyl)4-IndenoFluorene. Electrochimica Acta, 2013, 110, 735-740.	5.2	9
96	A Dihydrodinaphthoheptacene. Journal of Organic Chemistry, 2018, 83, 1891-1897.	3.2	9
97	Quinolinophenothiazine as an electron rich fragment for high efficiency RGB single-layer phosphorescent organic light-emitting diodes. Materials Chemistry Frontiers, 2021, 5, 8066-8077.	5.9	9
98	1H-NMR and EPR studies of the electronic structure of low-spin ruthenium(III) isocyanide porphyrin complexes: unusual (dxz,dyz)4 (dxy)1 configuration. Journal of Organometallic Chemistry, 2001, 629, 145-152.	1.8	8
99	[<i>n</i>] ycloâ€9,9â€dibutylâ€2,7â€fluorene (<i>n</i> =4, 5): Nanoring Size Influence in Carbonâ€Bridged Cycloâ€ <i>para</i> â€phenylenes. Angewandte Chemie, 2020, 132, 11159-11165.	2.0	8
100	A–΀–A, D–΀–D and D–΀–A blue emitting fluorophores based on dispiro[fluorene-9,6′-indeno[1,2- <i>b</i>]fluorene-12′,9′′-fluorene]. Materials Advances, 2021, 2, 127	71 ⁵ 1283.	8
101	Cyclization of Terphenylâ€Bisfluorenols: A Mechanistic Study of the Regioselectvity. Chemistry - A European Journal, 2019, 25, 10689-10697.	3.3	6
102	Stability of Tin Etiopurpurin¶. Photochemistry and Photobiology, 2005, 81, 149.	2.5	6
103	Facial discrimination in monoarylporphyrins: Synthesis and stereochemical behaviour of bis(ligated) monospirobifluorenylporphyrin ruthenium complexes. Inorganic Chemistry Communication, 2007, 10, 627-630.	3.9	4
104	Linking triptycene to silole: a fruitful association. Materials Chemistry Frontiers, 2020, 4, 2006-2017.	5.9	3
105	Journal of Materials Chemistry C Editor's choice web collection: â€~Spiro compounds for electronics'. Journal of Materials Chemistry C, 0, , .	5.5	3
106	Stability of Tin Etiopurpurin [¶] . Photochemistry and Photobiology, 2005, 81, 149-153.	2.5	2
107	Discrimination of positional isomers by ion mobility mass spectrometry: application to organic semiconductors. Analytical Methods, 2018, 10, 2303-2306.	2.7	2
108	Dispiroacridine-indacenobisthiophene positional isomers: impact of the bridge on the physicochemical properties. Materials Chemistry Frontiers, 2022, 6, 225-236.	5.9	2

#	Article	IF	CITATIONS
109	Annealing effect on the electrical proprieties of IF(CN2)2-meta based OTFTs: Thermal behavior and modeling of charge transport. Superlattices and Microstructures, 2018, 123, 286-296.	3.1	1
110	Synthesis, photophysical and electropolymerization properties of thiophene-substituted 2,3-diphenylbuta-1,3-dienes. New Journal of Chemistry, 2020, 44, 12556-12567.	2.8	1
111	Syntheses of Manganese and Iron Tetraspirobifluorene Porphyrins as New Catalysts for Oxidation of Alkenes by Hydrogen Peroxide and Iodosylbenzene ChemInform, 2003, 34, no.	0.0	0
112	An expedient approach to the 2,3,5,6-tetrasubstituted pyridine core of nosiheptide using oxidative cleavage of 2,3,5,8-tetrasubstituted quinolines. Arkivoc, 2000, 2007, 56-63.	0.5	0
113	Spirobifluorenyl-Porphyrins and their Derived Polymers for Homogeneous or Heterogeneous Catalysis. , 2016, , 345-393.		0