
## Karl-Erich Jaeger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5284580/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lipases for biotechnology. Current Opinion in Biotechnology, 2002, 13, 390-397.                                                                                                           | 6.6  | 1,156     |
| 2  | Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 1999, 343, 177-183.                                                                                      | 3.7  | 1,015     |
| 3  | Bacterial lipases. FEMS Microbiology Reviews, 1994, 15, 29-63.                                                                                                                            | 8.6  | 867       |
| 4  | Multivalent glycoconjugates as anti-pathogenic agents. Chemical Society Reviews, 2013, 42, 4709-4727.                                                                                     | 38.1 | 464       |
| 5  | Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 1999, 343, 177.                                                                                          | 3.7  | 399       |
| 6  | Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution. Angewandte<br>Chemie International Edition in English, 1997, 36, 2830-2832.                        | 4.4  | 359       |
| 7  | Reporter proteins for in vivo fluorescence without oxygen. Nature Biotechnology, 2007, 25, 443-445.                                                                                       | 17.5 | 336       |
| 8  | Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology (United Kingdom), 2005, 151, 1313-1323.                            | 1.8  | 303       |
| 9  | Crystal Structure of Pseudomonas aeruginosa Lipase in the Open Conformation. Journal of Biological<br>Chemistry, 2000, 275, 31219-31225.                                                  | 3.4  | 248       |
| 10 | The crystal structure of Bacillus subtili lipase: a minimal α/β hydrolase fold enzyme. Journal of<br>Molecular Biology, 2001, 309, 215-226.                                               | 4.2  | 242       |
| 11 | Directed evolution of an enantioselective lipase. Chemistry and Biology, 2000, 7, 709-718.                                                                                                | 6.0  | 231       |
| 12 | Inhibition and Dispersion of Pseudomonas aeruginosa Biofilms by Glycopeptide Dendrimers Targeting the Fucose-Specific Lectin LecB. Chemistry and Biology, 2008, 15, 1249-1257.            | 6.0  | 211       |
| 13 | Advances in Recovery of Novel Biocatalysts from Metagenomes. Journal of Molecular Microbiology and Biotechnology, 2009, 16, 25-37.                                                        | 1.0  | 200       |
| 14 | Directed Evolution of an Enantioselective Enzyme through Combinatorial Multiple-Cassette<br>Mutagenesis. Angewandte Chemie - International Edition, 2001, 40, 3589.                       | 13.8 | 194       |
| 15 | A Novel Polyester Hydrolase From the Marine Bacterium Pseudomonas aestusnigri – Structural and<br>Functional Insights. Frontiers in Microbiology, 2020, 11, 114.                          | 3.5  | 172       |
| 16 | Directed Evolution Empowered Redesign of Natural Proteins for the Sustainable Production of<br>Chemicals and Pharmaceuticals. Angewandte Chemie - International Edition, 2019, 58, 36-40. | 13.8 | 169       |
| 17 | Bacterial lipases from Pseudomonas: Regulation of gene expression and mechanisms of secretion.<br>Biochimie, 2000, 82, 1023-1032.                                                         | 2.6  | 160       |
| 18 | Enantioselective biocatalysis optimized by directed evolution. Current Opinion in Biotechnology, 2004, 15, 305-313.                                                                       | 6.6  | 152       |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Autotransporter Esterase EstA of <i>Pseudomonas aeruginosa</i> Is Required for Rhamnolipid Production, Cell Motility, and Biofilm Formation. Journal of Bacteriology, 2007, 189, 6695-6703.                                  | 2.2 | 151       |
| 20 | Optimization of Protease Secretion in <i>Bacillus subtilis</i> and <i>Bacillus licheniformis</i> by<br>Screening of Homologous and Heterologous Signal Peptides. Applied and Environmental<br>Microbiology, 2010, 76, 6370-6376. | 3.1 | 147       |
| 21 | A Novel Lipolytic Enzyme Located in the Outer Membrane of <i>Pseudomonas aeruginosa</i> . Journal of Bacteriology, 1999, 181, 6977-6986.                                                                                         | 2.2 | 145       |
| 22 | Enantioselective Enzymes for Organic Synthesis Created by Directed Evolution. Chemistry - A European<br>Journal, 2000, 6, 407-412.                                                                                               | 3.3 | 143       |
| 23 | Erzeugung enantioselektiver Biokatalysatoren für die Organische Chemie durch Inâ€vitroâ€Evolution.<br>Angewandte Chemie, 1997, 109, 2961-2963.                                                                                   | 2.0 | 122       |
| 24 | Structural Basis of Carbohydrate Recognition by the Lectin LecB from Pseudomonas aeruginosa.<br>Journal of Molecular Biology, 2003, 331, 861-870.                                                                                | 4.2 | 117       |
| 25 | Topological characterization and modeling of the 3D structure of lipase fromPseudomonas aeruginosa. FEBS Letters, 1993, 332, 143-149.                                                                                            | 2.8 | 112       |
| 26 | Rapid gene inactivation inPseudomonas aeruginosa. FEMS Microbiology Letters, 2000, 193, 201-205.                                                                                                                                 | 1.8 | 111       |
| 27 | The lid is a structural and functional determinant of lipase activity and selectivity. Journal of<br>Molecular Catalysis B: Enzymatic, 2006, 39, 166-170.                                                                        | 1.8 | 110       |
| 28 | Learning from Directed Evolution: Further Lessons from Theoretical Investigations into Cooperative Mutations in Lipase Enantioselectivity. ChemBioChem, 2007, 8, 106-112.                                                        | 2.6 | 107       |
| 29 | Determinants and Prediction of Esterase Substrate Promiscuity Patterns. ACS Chemical Biology, 2018, 13, 225-234.                                                                                                                 | 3.4 | 106       |
| 30 | Superior Biocatalysts by Directed Evolution. Topics in Current Chemistry, 1999, , 31-57.                                                                                                                                         | 4.0 | 103       |
| 31 | Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology<br>(United Kingdom), 2010, 156, 2239-2252.                                                                                         | 1.8 | 102       |
| 32 | Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based<br>biosensor. BMC Biology, 2012, 10, 28.                                                                                      | 3.8 | 102       |
| 33 | A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. FEBS Journal, 2000, 267, 6459-6469.                                                                                    | 0.2 | 97        |
| 34 | Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Marine<br>Drugs, 2019, 17, 408.                                                                                                     | 4.6 | 97        |
| 35 | Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.<br>Metabolic Engineering, 2017, 42, 145-156.                                                                                        | 7.0 | 96        |
| 36 | Distribution and Phylogeny of Light-Oxygen-Voltage-Blue-Light-Signaling Proteins in the Three<br>Kingdoms of Life. Journal of Bacteriology, 2009, 191, 7234-7242.                                                                | 2.2 | 95        |

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The photophysics of LOV-based fluorescent proteins — new tools for cell biology. Photochemical and<br>Photobiological Sciences, 2014, 13, 875-883.                                                                                  | 2.9  | 95        |
| 38 | Flavin Mononucleotide-Based Fluorescent Reporter Proteins Outperform Green Fluorescent<br>Protein-Like Proteins as Quantitative <i>In Vivo</i> Real-Time Reporters. Applied and Environmental<br>Microbiology, 2010, 76, 5990-5994. | 3.1  | 94        |
| 39 | Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Current<br>Opinion in Biotechnology, 2004, 15, 285-290.                                                                                       | 6.6  | 91        |
| 40 | Learning from Directed Evolution: Theoretical Investigations into Cooperative Mutations in Lipase Enantioselectivity. ChemBioChem, 2004, 5, 214-223.                                                                                | 2.6  | 88        |
| 41 | A Calcium-gated Lid and a Large β-Roll Sandwich Are Revealed by the Crystal Structure of Extracellular<br>Lipase from Serratia marcescens. Journal of Biological Chemistry, 2007, 282, 31477-31483.                                 | 3.4  | 88        |
| 42 | Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa.<br>Microbiological Research, 2005, 160, 165-176.                                                                                     | 5.3  | 87        |
| 43 | Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chemistry and Physics of Lipids, 1998, 93, 3-14.                                                                                            | 3.2  | 84        |
| 44 | The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes. Applied Microbiology and Biotechnology, 2015, 99, 2165-2178.                                               | 3.6  | 83        |
| 45 | Singleâ€Cell Highâ€Throughput Screening To Identify Enantioselective Hydrolytic Enzymes. Angewandte<br>Chemie - International Edition, 2008, 47, 5085-5088.                                                                         | 13.8 | 81        |
| 46 | Alternative hosts for functional (meta)genome analysis. Applied Microbiology and Biotechnology, 2014, 98, 8099-8109.                                                                                                                | 3.6  | 77        |
| 47 | A generic system for theEscherichia colicell-surface display of lipolytic enzymes. FEBS Letters, 2005, 579, 1177-1182.                                                                                                              | 2.8  | 76        |
| 48 | TREX: A Universal Tool for the Transfer and Expression of Biosynthetic Pathways in Bacteria. ACS Synthetic Biology, 2013, 2, 22-33.                                                                                                 | 3.8  | 76        |
| 49 | Efficient recombinant production of prodigiosin in Pseudomonas putida. Frontiers in Microbiology, 2015, 6, 972.                                                                                                                     | 3.5  | 76        |
| 50 | Hexadecane and Tween 80 Stimulate Lipase Production in Burkholderia glumae by Different<br>Mechanisms. Applied and Environmental Microbiology, 2007, 73, 3838-3844.                                                                 | 3.1  | 75        |
| 51 | Interaction between extracellular lipase LipA and the polysaccharide alginate of Pseudomonas aeruginosa. BMC Microbiology, 2013, 13, 159.                                                                                           | 3.3  | 75        |
| 52 | Glycopeptide Dendrimers with High Affinity for the Fucoseâ€Binding Lectin LecB from <i>Pseudomonas<br/>aeruginosa</i> . ChemMedChem, 2009, 4, 562-569.                                                                              | 3.2  | 74        |
| 53 | Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Scientific Reports, 2016, 6, 27035.                                                                                      | 3.3  | 74        |
| 54 | The Metagenome-Derived Enzymes LipS and LipT Increase the Diversity of Known Lipases. PLoS ONE, 2012,<br>7, e47665.                                                                                                                 | 2.5  | 72        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Probing Enzyme Promiscuity of SGNH Hydrolases. ChemBioChem, 2010, 11, 2158-2167.                                                                                                                                        | 2.6 | 71        |
| 56 | Bacterial lipases for biotechnological applications. Journal of Molecular Catalysis B: Enzymatic, 1997, 3, 3-12.                                                                                                        | 1.8 | 70        |
| 57 | Lipase-Specific Foldases. ChemBioChem, 2004, 5, 152-161.                                                                                                                                                                | 2.6 | 68        |
| 58 | Directed Evolution of an EnantioselectiveBacillus subtilisLipase. Biocatalysis and Biotransformation, 2003, 21, 67-73.                                                                                                  | 2.0 | 64        |
| 59 | Catalytically-active inclusion bodies—Carrier-free protein immobilizates for application in biotechnology and biomedicine. Journal of Biotechnology, 2017, 258, 136-147.                                                | 3.8 | 64        |
| 60 | Structural Rigidity and Protein Thermostability in Variants of Lipase A from Bacillus subtilis. PLoS ONE, 2015, 10, e0130289.                                                                                           | 2.5 | 64        |
| 61 | DsbA and DsbC Affect Extracellular Enzyme Formation in Pseudomonas aeruginosa. Journal of<br>Bacteriology, 2001, 183, 587-596.                                                                                          | 2.2 | 63        |
| 62 | A novel T7 RNA polymerase dependent expression system for high-level protein production in the phototrophic bacterium Rhodobacter capsulatus. Protein Expression and Purification, 2010, 69, 137-146.                   | 1.3 | 62        |
| 63 | Agar plateâ€based screening methods for the identification of polyester hydrolysis by<br><i>Pseudomonas</i> species. Microbial Biotechnology, 2020, 13, 274-284.                                                        | 4.2 | 62        |
| 64 | Disulfide Bond in Pseudomonas aeruginosa Lipase Stabilizes the Structure but Is Not Required for<br>Interaction with Its Foldase. Journal of Bacteriology, 2001, 183, 597-603.                                          | 2.2 | 61        |
| 65 | Lights on and action! Controlling microbial gene expression by light. Applied Microbiology and Biotechnology, 2011, 90, 23-40.                                                                                          | 3.6 | 58        |
| 66 | Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for<br>LOV–LOV dimerization and interdomain interactions. Photochemical and Photobiological Sciences,<br>2007, 6, 41-49. | 2.9 | 57        |
| 67 | Computerâ€Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns. Chemistry - A European Journal, 2020, 26, 643-649.                                  | 3.3 | 57        |
| 68 | Fusion of a Coiledâ€Coil Domain Facilitates the High‣evel Production of Catalytically Active Enzyme<br>Inclusion Bodies. ChemCatChem, 2016, 8, 142-152.                                                                 | 3.7 | 56        |
| 69 | Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 2020, 8, 976.                                              | 4.1 | 56        |
| 70 | Lipolytic enzymes LipA and LipB fromBacillus subtilisdiffer in regulation of gene expression,<br>biochemical properties, and three-dimensional structure. FEBS Letters, 2001, 502, 89-92.                               | 2.8 | 55        |
| 71 | Mutual Exchange of Kinetic Properties by Extended Mutagenesis in Two Short LOV Domain Proteins from <i>Pseudomonas putida</i> . Biochemistry, 2009, 48, 10321-10333.                                                    | 2.5 | 55        |
| 72 | Structural Basis for the Slow Dark Recovery of a Full-Length LOV Protein from Pseudomonas putida.<br>Journal of Molecular Biology, 2012, 417, 362-374.                                                                  | 4.2 | 54        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates. PLoS ONE, 2018, 13, e0200160.                | 2.5  | 54        |
| 74 | Enzyme Hydration Determines Resistance in Organic Cosolvents. ACS Catalysis, 2020, 10, 14847-14856.                                                                                                               | 11.2 | 53        |
| 75 | Combinatorial variation of branching length and multivalency in a large (390 625 member) glycopeptide dendrimer library: ligands for fucose-specific lectins. New Journal of Chemistry, 2007, 31, 1291.           | 2.8  | 51        |
| 76 | Structural and Functional Characterisation of TesA - A Novel Lysophospholipase A from Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e69125.                                                                          | 2.5  | 51        |
| 77 | Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas<br>putidaꀔa step forward to tailor-made rhamnolipids. Applied Microbiology and Biotechnology, 2018,<br>102, 1229-1239. | 3.6  | 51        |
| 78 | New Prodigiosin Derivatives Obtained by Mutasynthesis in <i>Pseudomonas putida</i> . ACS Synthetic Biology, 2017, 6, 1757-1765.                                                                                   | 3.8  | 49        |
| 79 | Inhibition of Pseudomonas aeruginosa biofilms with a glycopeptide dendrimer containing D-amino acids. MedChemComm, 2011, 2, 418.                                                                                  | 3.4  | 48        |
| 80 | Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis. PLoS<br>Computational Biology, 2016, 12, e1004754.                                                                  | 3.2  | 48        |
| 81 | Biochemical properties and three-dimensional structures of two extracellular lipolytic enzymes from<br>Bacillus subtilis. Colloids and Surfaces B: Biointerfaces, 2002, 26, 37-46.                                | 5.0  | 47        |
| 82 | Ultrahigh-Throughput Screening to IdentifyE. coli Cells Expressing Functionally Active Enzymes on their Surface. ChemBioChem, 2007, 8, 943-949.                                                                   | 2.6  | 47        |
| 83 | Novel biocatalysts for white biotechnology. Biotechnology Journal, 2006, 1, 777-786.                                                                                                                              | 3.5  | 46        |
| 84 | Exchange of single amino acids at different positions of a recombinant protein affects metabolic<br>burden in Escherichia coli. Microbial Cell Factories, 2015, 14, 10.                                           | 4.0  | 46        |
| 85 | Structural features determining thermal adaptation of esterases. Protein Engineering, Design and Selection, 2016, 29, 65-76.                                                                                      | 2.1  | 46        |
| 86 | Catalytically-active inclusion bodies for biotechnology—general concepts, optimization, and application. Applied Microbiology and Biotechnology, 2020, 104, 7313-7329.                                            | 3.6  | 46        |
| 87 | Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli.<br>Journal of Biotechnology, 2014, 181, 27-30.                                                                       | 3.8  | 45        |
| 88 | Towards Understanding Directed Evolution: More than Half of All Amino Acid Positions Contribute<br>to Ionic Liquid Resistance of <i>Bacillus subtilis</i> Lipase A. ChemBioChem, 2015, 16, 937-945.               | 2.6  | 45        |
| 89 | Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Scientific Reports, 2017, 7, 13346.                                                                      | 3.3  | 45        |
| 90 | How to Engineer Organic Solvent Resistant Enzymes: Insights from Combined Molecular Dynamics and<br>Directed Evolution Study. ChemCatChem, 2020, 12, 4073-4083.                                                   | 3.7  | 45        |

| #   | Article                                                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance.<br>Angewandte Chemie - International Edition, 2021, 60, 11448-11456.                                                                                                                                                                 | 13.8 | 45        |
| 92  | Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and Pseudomonas putida. Journal of Biotechnology, 2012, 161, 71-79.                                                                                                                                                                      | 3.8  | 44        |
| 93  | Discovery of the first lightâ€dependent protochlorophyllide oxidoreductase in anoxygenic<br>phototrophic bacteria. Molecular Microbiology, 2014, 93, 1066-1078.                                                                                                                                                                       | 2.5  | 44        |
| 94  | Exploring the Protein Stability Landscape: <i>Bacillus subtilis</i> Lipase A as a Model for Detergent<br>Tolerance. ChemBioChem, 2015, 16, 930-936.                                                                                                                                                                                   | 2.6  | 44        |
| 95  | Towards robust <i>Pseudomonas</i> cell factories to harbour novel biosynthetic pathways. Essays in Biochemistry, 2021, 65, 319-336.                                                                                                                                                                                                   | 4.7  | 44        |
| 96  | Genome-Wide RNA Sequencing Analysis of Quorum Sensing-Controlled Regulons in the<br>Plant-Associated Burkholderia glumae PG1 Strain. Applied and Environmental Microbiology, 2015, 81,<br>7993-8007.                                                                                                                                  | 3.1  | 43        |
| 97  | Extracellular lipases fromBacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiology Letters, 2003, 225, 319-324.                                                                                                                                                   | 1.8  | 42        |
| 98  | Pseudomonas aeruginosa lectins I and II and their interaction with human airway cilia. Journal of<br>Laryngology and Otology, 2005, 119, 595-599.                                                                                                                                                                                     | 0.8  | 42        |
| 99  | LOVely enzymes – towards engineering lightâ€controllable biocatalysts. Microbial Biotechnology, 2010,<br>3, 15-23.                                                                                                                                                                                                                    | 4.2  | 41        |
| 100 | Photophysics of the LOV-Based Fluorescent Protein Variant iLOV-Q489K Determined by Simulation and Experiment. Journal of Physical Chemistry B, 2016, 120, 3344-3352.                                                                                                                                                                  | 2.6  | 41        |
| 101 | Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS<br>ONE, 2018, 13, e0200940.                                                                                                                                                                                                       | 2.5  | 41        |
| 102 | Pressure adaptation is linked to thermal adaptation in saltâ€saturated marine habitats. Environmental<br>Microbiology, 2015, 17, 332-345.                                                                                                                                                                                             | 3.8  | 40        |
| 103 | Light-Controlled Cell Factories: Employing Photocaged Isopropyl-Î <sup>2</sup> - <scp>d</scp><br>-Thiogalactopyranoside for Light-Mediated Optimization of <i>lac</i> Promoter-Based Gene Expression<br>and (+)-Valencene Biosynthesis in Corynebacterium glutamicum. Applied and Environmental<br>Microbiology. 2016. 82. 6141-6149. | 3.1  | 40        |
| 104 | Enlightened Enzymes: Strategies to Create Novel Photoresponsive Proteins. Chemistry - A European<br>Journal, 2011, 17, 2552-2560.                                                                                                                                                                                                     | 3.3  | 39        |
| 105 | Light-responsive control of bacterial gene expression: precise triggering of the <i>lac</i> promoter activity using photocaged IPTG. Integrative Biology (United Kingdom), 2014, 6, 755-765.                                                                                                                                          | 1.3  | 39        |
| 106 | How To Engineer Ionic Liquids Resistant Enzymes: Insights from Combined Molecular Dynamics and Directed Evolution Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 11293-11302.                                                                                                                                             | 6.7  | 38        |
| 107 | Interaction of carbohydrate-binding modules with poly(ethylene terephthalate). Applied Microbiology and Biotechnology, 2019, 103, 4801-4812.                                                                                                                                                                                          | 3.6  | 38        |
| 108 | Interdomain signalling in the blue-light sensing and GTP-binding protein YtvA: A mutagenesis study uncovering the importance of specific protein sites. Photochemical and Photobiological Sciences, 2010, 9, 47-56.                                                                                                                   | 2.9  | 37        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Scientific<br>Reports, 2018, 8, 15021.                                                                       | 3.3 | 37        |
| 110 | Determination of Lipolytic Enzyme Activities. Methods in Molecular Biology, 2014, 1149, 111-134.                                                                                                        | 0.9 | 37        |
| 111 | Specific Association of Lectin LecB with the Surface of Pseudomonas aeruginosa: Role of Outer<br>Membrane Protein OprF. PLoS ONE, 2012, 7, e46857.                                                      | 2.5 | 36        |
| 112 | Structure and function of a short LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae. BMC Microbiology, 2015, 15, 30.                                                            | 3.3 | 36        |
| 113 | Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX.<br>Synthetic and Systems Biotechnology, 2017, 2, 310-319.                                                | 3.7 | 36        |
| 114 | A Synthetic Reaction Cascade Implemented by Colocalization of Two Proteins within Catalytically Active Inclusion Bodies. ACS Synthetic Biology, 2018, 7, 2282-2295.                                     | 3.8 | 36        |
| 115 | Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas<br>aeruginosa. FEMS Microbiology Letters, 2010, 309, no-no.                                                   | 1.8 | 35        |
| 116 | Identification of amino acids involved in the hydrolytic activity of lipase LipBL from Marinobacter<br>lipolyticus. Microbiology (United Kingdom), 2012, 158, 2192-2203.                                | 1.8 | 35        |
| 117 | Detection of Prion Protein Particles in Blood Plasma of Scrapie Infected Sheep. PLoS ONE, 2012, 7, e36620.                                                                                              | 2.5 | 35        |
| 118 | Directionality of substrate translocation of the hemolysin A Type I secretion system. Scientific Reports, 2015, 5, 12470.                                                                               | 3.3 | 35        |
| 119 | The biotechnological potential of marine bacteria in the novel lineage of <i>Pseudomonas pertucinogena</i> . Microbial Biotechnology, 2020, 13, 19-31.                                                  | 4.2 | 35        |
| 120 | Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic<br>Cultivation. PLoS ONE, 2016, 11, e0160711.                                                              | 2.5 | 35        |
| 121 | Are Directed Evolution Approaches Efficient in Exploring Nature's Potential to Stabilize a Lipase in<br>Organic Cosolvents?. Catalysts, 2017, 7, 142.                                                   | 3.5 | 34        |
| 122 | The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS ONE, 2017, 12, e0189816.                                  | 2.5 | 33        |
| 123 | The structure–function relationship of the lipases from Pseudomonas aeruginosa and Bacillus<br>subtilis. Protein Engineering, Design and Selection, 1994, 7, 523-529.                                   | 2.1 | 32        |
| 124 | Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution. Protein Engineering, Design and Selection, 2005, 18, 509-514. | 2.1 | 32        |
| 125 | Light-induced gene expression with photocaged IPTG for induction profiling in a high-throughput screening system. Microbial Cell Factories, 2016, 15, 63.                                               | 4.0 | 32        |
| 126 | The subcellular localization of a C-terminal processing protease in Pseudomonas aeruginosa. FEMS<br>Microbiology Letters, 2011, 316, 23-30.                                                             | 1.8 | 31        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Autotransporters with GDSL Passenger Domains: Molecular Physiology and Biotechnological Applications. ChemBioChem, 2011, 12, 1476-1485.                                                                       | 2.6 | 31        |
| 128 | Signaling States of a Short Blue-Light Photoreceptor Protein PpSB1-LOV Revealed from Crystal Structures and Solution NMR Spectroscopy. Journal of Molecular Biology, 2016, 428, 3721-3736.                    | 4.2 | 31        |
| 129 | A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH. Journal of Biotechnology, 2017, 258, 25-32.                                                                     | 3.8 | 31        |
| 130 | Engineered Rhodobacter capsulatus as a Phototrophic Platform Organism for the Synthesis of Plant<br>Sesquiterpenoids. Frontiers in Microbiology, 2019, 10, 1998.                                              | 3.5 | 31        |
| 131 | Functional Cell-Surface Display of a Lipase-Specific Chaperone. ChemBioChem, 2007, 8, 55-60.                                                                                                                  | 2.6 | 30        |
| 132 | A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for<br>ultra-high resolution structural studies. Photochemical and Photobiological Sciences, 2019, 18,<br>1793-1805. | 2.9 | 30        |
| 133 | Novel Tools for the Functional Expression of Metagenomic DNA. Methods in Molecular Biology, 2010, 668, 117-139.                                                                                               | 0.9 | 30        |
| 134 | CompassR Yields Highly Organicâ€Solventâ€Tolerant Enzymes through Recombination of Compatible<br>Substitutions. Chemistry - A European Journal, 2021, 27, 2789-2797.                                          | 3.3 | 28        |
| 135 | Induction of Inflammatory Mediator Release (12-Hydroxyeicosatetraenoic Acid) from Human Platelets<br>by <i>Pseudomonas aeruginosa</i> . International Archives of Allergy and Immunology, 1994, 104, 33-41.   | 2.1 | 27        |
| 136 | Exploring the full natural diversity of single amino acid exchange reveals that 40–60% of BSLA positions improve organic solvents resistance. Bioresources and Bioprocessing, 2018, 5, .                      | 4.2 | 27        |
| 137 | Photocaged Arabinose: A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene<br>Expression. ChemBioChem, 2016, 17, 296-299.                                                               | 2.6 | 26        |
| 138 | Decoding the ocean's microbiological secrets for marine enzyme biodiscovery. FEMS Microbiology<br>Letters, 2019, 366, .                                                                                       | 1.8 | 26        |
| 139 | CompassR-guided recombination unlocks design principles to stabilize lipases in ILs with minimal experimental efforts. Green Chemistry, 2021, 23, 3474-3486.                                                  | 9.0 | 26        |
| 140 | Emerging Solutions for <i>in Vivo</i> Biocatalyst Immobilization: Tailor-Made Catalysts for Industrial Biocatalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 8919-8945.                           | 6.7 | 26        |
| 141 | Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440. ChemBioChem, 2018, 19, 1545-1552.                                                                                           | 2.6 | 25        |
| 142 | Multiplex-PCR-Based Recombination as a Novel High-Fidelity Method for Directed Evolution.<br>ChemBioChem, 2005, 6, 1062-1067.                                                                                 | 2.6 | 24        |
| 143 | Synthesis of Chiral Cyanohydrins by Recombinant Escherichia coli Cells in a Micro-Aqueous Reaction<br>System. Applied and Environmental Microbiology, 2012, 78, 5025-5027.                                    | 3.1 | 24        |
| 144 | Tailor-made catalytically active inclusion bodies for different applications in biocatalysis. Catalysis<br>Science and Technology, 2018, 8, 5816-5826.                                                        | 4.1 | 24        |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Genetically Encoded Photosensitizers as Light-Triggered Antimicrobial Agents. International Journal of Molecular Sciences, 2019, 20, 4608.                                                                                                    | 4.1  | 24        |
| 146 | Enantioselective kinetic resolution of phenylalkyl carboxylic acids using metagenomeâ€derived esterases. Microbial Biotechnology, 2010, 3, 59-64.                                                                                             | 4.2  | 23        |
| 147 | Novel Biocatalysts by Identification and Design. Biocatalysis and Biotransformation, 2004, 22, 141-146.                                                                                                                                       | 2.0  | 22        |
| 148 | Ionic liquid activated <i>Bacillus subtilis</i> lipase A variants through cooperative surface substitutions. Biotechnology and Bioengineering, 2015, 112, 1997-2004.                                                                          | 3.3  | 22        |
| 149 | Novel Thermostable Flavinâ€binding Fluorescent Proteins from Thermophilic Organisms.<br>Photochemistry and Photobiology, 2017, 93, 849-856.                                                                                                   | 2.5  | 22        |
| 150 | Unraveling the effects of amino acid substitutions enhancing lipase resistance to an ionic liquid: a molecular dynamics study. Physical Chemistry Chemical Physics, 2018, 20, 9600-9609.                                                      | 2.8  | 22        |
| 151 | Phototrophic purple bacteria as optoacoustic in vivo reporters of macrophage activity. Nature<br>Communications, 2019, 10, 1191.                                                                                                              | 12.8 | 22        |
| 152 | Biocatalytic production of enantiopure cyclohexane-trans-1,2-diol using extracellular lipases from<br>Bacillus subtilis. Applied Microbiology and Biotechnology, 2006, 72, 1107-1116.                                                         | 3.6  | 21        |
| 153 | Light-induced structural changes in a short light, oxygen, voltage (LOV) protein revealed by<br>molecular dynamics simulations—implications for the understanding of LOV photoactivation.<br>Frontiers in Molecular Biosciences, 2015, 2, 55. | 3.5  | 21        |
| 154 | Activity-independent screening of secreted proteins using split GFP. Journal of Biotechnology, 2017, 258, 110-116.                                                                                                                            | 3.8  | 21        |
| 155 | Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent<br>Tolerance for <i>Bacillus subtilis</i> Lipase A. Journal of Chemical Information and Modeling, 2020,<br>60, 1568-1584.                       | 5.4  | 21        |
| 156 | Interaction Between Extracellular Polysaccharides and Enzymes. , 1999, , 231-251.                                                                                                                                                             |      | 21        |
| 157 | Lectin-based affinity tag for one-step protein purification. BioTechniques, 2006, 41, 327-332.                                                                                                                                                | 1.8  | 20        |
| 158 | Glycosylation Is Required for Outer Membrane Localization of the Lectin LecB in <i>Pseudomonas aeruginosa</i> . Journal of Bacteriology, 2011, 193, 1107-1113.                                                                                | 2.2  | 20        |
| 159 | Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes. Scientific Reports, 2019, 9, 7028.                                                                                                                        | 3.3  | 20        |
| 160 | A Straightforward Assay for Screening and Quantification of Biosurfactants in Microbial Culture Supernatants. Frontiers in Bioengineering and Biotechnology, 2020, 8, 958.                                                                    | 4.1  | 20        |
| 161 | Organic-Solvent-Tolerant Carboxylic Ester Hydrolases for Organic Synthesis. Applied and Environmental Microbiology, 2020, 86, .                                                                                                               | 3.1  | 20        |
| 162 | Targeting 16S rDNA for Stable Recombinant Gene Expression in <i>Pseudomonas</i> . ACS Synthetic<br>Biology, 2019, 8, 1901-1912.                                                                                                               | 3.8  | 19        |

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Gerichtete Evolution ermĶglicht das Design von maßgeschneiderten Proteinen zur nachhaltigen<br>Produktion von Chemikalien und Pharmazeutika. Angewandte Chemie, 2019, 131, 36-41.                                                                         | 2.0 | 19        |
| 164 | The length of ribosomal binding site spacer sequence controls the production yield for intracellular and secreted proteins by Bacillus subtilis. Microbial Cell Factories, 2020, 19, 154.                                                                 | 4.0 | 19        |
| 165 | A novel transposon for functional expression of DNA libraries. Journal of Biotechnology, 2006, 123, 281-287.                                                                                                                                              | 3.8 | 18        |
| 166 | A particular silent codon exchange in a recombinant gene greatly influences host cell metabolic activity. Microbial Cell Factories, 2015, 14, 156.                                                                                                        | 4.0 | 18        |
| 167 | Novel Tools for the Functional Expression of Metagenomic DNA. Methods in Molecular Biology, 2017, 1539, 159-196.                                                                                                                                          | 0.9 | 17        |
| 168 | Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis. Microbial Cell Factories, 2017, 16, 160.                                                                                      | 4.0 | 17        |
| 169 | Mechanistic Basis of the Fast Dark Recovery of the Short LOV Protein DsLOV from <i>Dinoroseobacter shibae</i> . Biochemistry, 2018, 57, 4833-4847.                                                                                                        | 2.5 | 17        |
| 170 | Bioprospecting Reveals Class III ω-Transaminases Converting Bulky Ketones and Environmentally<br>Relevant Polyamines. Applied and Environmental Microbiology, 2019, 85, .                                                                                 | 3.1 | 17        |
| 171 | The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins.<br>Journal of Biological Chemistry, 2021, 296, 100662.                                                                                               | 3.4 | 17        |
| 172 | Polar Substitutions on the Surface of a Lipase Substantially Improve Tolerance in Organic Solvents.<br>ChemSusChem, 2022, 15, .                                                                                                                           | 6.8 | 17        |
| 173 | Structure of a LOV protein in apo-state and implications for construction of LOV-based optical tools.<br>Scientific Reports, 2017, 7, 42971.                                                                                                              | 3.3 | 16        |
| 174 | Phylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline<br>Oxidoreductases. Catalysts, 2020, 10, 1072.                                                                                                                     | 3.5 | 16        |
| 175 | A T7 RNA polymerase-based toolkit for the concerted expression of clustered genes. Journal of<br>Biotechnology, 2012, 159, 162-171.                                                                                                                       | 3.8 | 15        |
| 176 | Conservation of Dark Recovery Kinetic Parameters and Structural Features in the Pseudomonadaceae<br>"Short―Light, Oxygen, Voltage (LOV) Protein Family: Implications for the Design of LOV-Based<br>Optogenetic Tools. Biochemistry, 2013, 52, 4460-4473. | 2.5 | 15        |
| 177 | Heterologous Production of β-Caryophyllene and Evaluation of Its Activity against Plant Pathogenic<br>Fungi. Microorganisms, 2021, 9, 168.                                                                                                                | 3.6 | 15        |
| 178 | Crystal structures of a novel family IV esterase in free and substrateâ€bound form. FEBS Journal, 2021, 288, 3570-3584.                                                                                                                                   | 4.7 | 15        |
| 179 | How Does Surface Charge Engineering of <i>Bacillus subtilis</i> Lipase A Improve Ionic Liquid<br>Resistance? Lessons Learned from Molecular Dynamics Simulations. ACS Sustainable Chemistry and<br>Engineering, 2022, 10, 2689-2698.                      | 6.7 | 15        |
| 180 | Fusion of a Flavin-Based Fluorescent Protein to Hydroxynitrile Lyase from Arabidopsis thaliana<br>Improves Enzyme Stability. Applied and Environmental Microbiology, 2013, 79, 4727-4733.                                                                 | 3.1 | 14        |

| #   | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Classification of Lipolytic Enzymes from Bacteria. , 2019, , 255-289.                                                                                                                                                                                              |     | 14        |
| 182 | Protocols for yTREX /Tn5â€based gene cluster expression in Pseudomonas putida. Microbial<br>Biotechnology, 2020, 13, 250-262.                                                                                                                                      | 4.2 | 14        |
| 183 | Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways.<br>Computational and Structural Biotechnology Journal, 2021, 19, 4248-4264.                                                                                        | 4.1 | 14        |
| 184 | Directed Evolution as a Means to Create Enantioselective Enzymes for Use in Organic Chemistry. , 0, , 245-279.                                                                                                                                                     |     | 13        |
| 185 | The Lipase LipA (PA2862) but Not LipC (PA4813) from Pseudomonas aeruginosa Influences Regulation of<br>Pyoverdine Production and Expression of the Sigma Factor PvdS. Journal of Bacteriology, 2011, 193,<br>5858-5860.                                            | 2.2 | 13        |
| 186 | Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity. Applied Microbiology<br>and Biotechnology, 2014, 98, 4963-4973.                                                                                                                 | 3.6 | 13        |
| 187 | Purification and simultaneous immobilization of <i>Arabidopsis thaliana</i> hydroxynitrile lyase<br>using a family 2 carbohydrateâ€binding module. Biotechnology Journal, 2015, 10, 811-819.                                                                       | 3.5 | 13        |
| 188 | Complete genome sequence of the lipase producing strain Burkholderia glumae PG1. Journal of<br>Biotechnology, 2015, 204, 3-4.                                                                                                                                      | 3.8 | 13        |
| 189 | Mutations improving production and secretion of extracellular lipase by Burkholderia glumae PG1.<br>Applied Microbiology and Biotechnology, 2016, 100, 1265-1273.                                                                                                  | 3.6 | 13        |
| 190 | An Enzymatic 2â€5tep Cofactor and Coâ€Product Recycling Cascade towards a Chiral 1,2â€Diol. Part II:<br>Catalytically Active Inclusion Bodies. Advanced Synthesis and Catalysis, 2019, 361, 2616-2626.                                                             | 4.3 | 13        |
| 191 | Promiscuous Esterases Counterintuitively Are Less Flexible than Specific Ones. Journal of Chemical<br>Information and Modeling, 2021, 61, 2383-2395.                                                                                                               | 5.4 | 13        |
| 192 | Classification of Lipolytic Enzymes from Bacteria. , 2019, , 1-35.                                                                                                                                                                                                 |     | 13        |
| 193 | Chemical biotechnology—a marriage of convenience and necessity. Current Opinion in Biotechnology, 2010, 21, 711-712.                                                                                                                                               | 6.6 | 12        |
| 194 | Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa. MicrobiologyOpen, 2014, 3,<br>89-103.                                                                                                                                                         | 3.0 | 12        |
| 195 | A membraneâ€bound esterase PA2949 from <i>PseudomonasÂaeruginosa</i> is expressed and purified from<br><i>EscherichiaÂcoli</i> . FEBS Open Bio, 2016, 6, 484-493.                                                                                                  | 2.3 | 12        |
| 196 | Online measurement of the respiratory activity in shake flasks enables the identification of cultivation phases and patterns indicating recombinant protein production in various <i>Escherichia coli</i> host strains. Biotechnology Progress, 2018, 34, 315-327. | 2.6 | 12        |
| 197 | Ustilago maydis Serves as a Novel Production Host for the Synthesis of Plant and Fungal<br>Sesquiterpenoids. Frontiers in Microbiology, 2020, 11, 1655.                                                                                                            | 3.5 | 12        |
| 198 | Structural and dynamic insights revealing how lipase binding domain MD1 of Pseudomonas aeruginosa<br>foldase affects lipase activation. Scientific Reports, 2020, 10, 3578.                                                                                        | 3.3 | 12        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Construction and comprehensive characterization of an EcLDCc-CatlB set—varying linkers and aggregation inducing tags. Microbial Cell Factories, 2021, 20, 49.                                                                                        | 4.0 | 12        |
| 200 | <i>Pseudomonas aeruginosa</i> esterase PA2949, a bacterial homolog of the human membrane esterase<br>ABHD6: expression, purification and crystallization. Acta Crystallographica Section F, Structural<br>Biology Communications, 2019, 75, 270-277. | 0.8 | 12        |
| 201 | Cofactor Trapping, a New Method To Produce Flavin Mononucleotide. Applied and Environmental<br>Microbiology, 2011, 77, 1097-1100.                                                                                                                    | 3.1 | 11        |
| 202 | Optimal Scanning of All Single-Point Mutants of a Protein. Journal of Computational Biology, 2013, 20, 990-997.                                                                                                                                      | 1.6 | 11        |
| 203 | Functional expression, purification, and biochemical properties of subtilase SprP from Pseudomonas aeruginosa. MicrobiologyOpen, 2015, 4, 743-752.                                                                                                   | 3.0 | 11        |
| 204 | Relationships between Substrate Promiscuity and Chiral Selectivity of Esterases from Phylogenetically and Environmentally Diverse Microorganisms. Catalysts, 2018, 8, 10.                                                                            | 3.5 | 11        |
| 205 | The Plant Sesquiterpene Nootkatone Efficiently Reduces Heterodera schachtii Parasitism by Activating<br>Plant Defense. International Journal of Molecular Sciences, 2020, 21, 9627.                                                                  | 4.1 | 11        |
| 206 | Detailed small-scale characterization and scale-up of active YFP inclusion body production with<br>Escherichia coli induced by a tetrameric coiled coil domain. Journal of Bioscience and Bioengineering,<br>2020, 129, 730-740.                     | 2.2 | 11        |
| 207 | Heterologous High-Level Gene Expression in the Photosynthetic Bacterium Rhodobacter capsulatus.<br>Methods in Molecular Biology, 2012, 824, 251-269.                                                                                                 | 0.9 | 11        |
| 208 | Mutations towards enantioselectivity adversely affect secretion of <i>Pseudomonas aeruginosa </i> lipase. FEMS Microbiology Letters, 2008, 282, 65-72.                                                                                               | 1.8 | 10        |
| 209 | The structure of the Cyberlindnera jadinii genome and its relation to Candida utilis analyzed by the occurrence of single nucleotide polymorphisms. Journal of Biotechnology, 2015, 211, 20-30.                                                      | 3.8 | 10        |
| 210 | A Highâ€Throughput Screening Method for Chiral Alcohols and its Application to Determine<br>Enantioselectivity of Lipases and Esterases. ChemCatChem, 2009, 1, 445-448.                                                                              | 3.7 | 9         |
| 211 | Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex. Communications Biology, 2019, 2, 351.                                                           | 4.4 | 9         |
| 212 | The Membraneâ€Integrated Steric Chaperone Lif Facilitates Active Site Opening ofPseudomonas aeruginosaLipase A. Journal of Computational Chemistry, 2020, 41, 500-512.                                                                               | 3.3 | 9         |
| 213 | Effect of Photocaged Isopropyl βâ€≺scp>dâ€lâ€thiogalactopyranoside Solubility on the Light<br>Responsiveness of Laclâ€controlled Expression Systems in Different Bacteria. ChemBioChem, 2021, 22,<br>539-547.                                        | 2.6 | 9         |
| 214 | Structural determinants underlying the adduct lifetime in the LOV proteins of <i>Pseudomonas putida</i> . FEBS Journal, 2021, 288, 4955-4972.                                                                                                        | 4.7 | 9         |
| 215 | Production of C20, C30 and C40 terpenes in the engineered phototrophic bacterium Rhodobacter capsulatus. Journal of Biotechnology, 2021, 338, 20-30.                                                                                                 | 3.8 | 9         |
| 216 | Biosynthesis of cycloartenol by expression of plant and bacterial oxidosqualene cyclases in engineered Rhodobacter capsulatus. Journal of Biotechnology, 2019, 306, 100014.                                                                          | 3.8 | 7         |

Karl-Erich Jaeger

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Biosensor-Based Optimization of Cutinase Secretion by Corynebacterium glutamicum. Frontiers in Microbiology, 2021, 12, 750150.                                                                                                    | 3.5 | 7         |
| 218 | Optochemical Control of Bacterial Gene Expression: Novel Photocaged Compounds for Different<br>Promoter Systems. ChemBioChem, 2022, 23, e202100467.                                                                               | 2.6 | 7         |
| 219 | Substrate Access Mechanism in a Novel Membrane-Bound Phospholipase A of <i>Pseudomonas<br/>aeruginosa</i> Concordant with Specificity and Regioselectivity. Journal of Chemical Information and<br>Modeling, 2021, 61, 5626-5643. | 5.4 | 7         |
| 220 | Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic<br>liquids by enzyme-wide saturation mutagenesis. Computational and Structural Biotechnology Journal,<br>2022, 20, 399-409.      | 4.1 | 7         |
| 221 | Rapid Sequence Scanning Mutagenesis Using In Silico Oligo Design and the Megaprimer PCR of Whole<br>Plasmid Method (MegaWHOP). Methods in Molecular Biology, 2010, 634, 127-135.                                                  | 0.9 | 6         |
| 222 | Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic<br>Phototrophs: Origin, Phylogeny, and Function. Molecular Biology and Evolution, 2021, 38, 819-837.                               | 8.9 | 6         |
| 223 | Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance.<br>Angewandte Chemie, 2021, 133, 11549-11557.                                                                                    | 2.0 | 6         |
| 224 | Extreme dependence of Chloroflexus aggregans LOV domain thermo- and photostability on the bound flavin species. Photochemical and Photobiological Sciences, 2021, 20, 1645-1656.                                                  | 2.9 | 6         |
| 225 | Overexpression and Secretion of Pseudomonas Lipases. , 2004, , 491-508.                                                                                                                                                           |     | 5         |
| 226 | Photocaged Carbohydrates: Versatile Tools for Controlling Gene Expression by Light. Synthesis, 2016, 49, 42-52.                                                                                                                   | 2.3 | 5         |
| 227 | A combination of mutational and computational scanning guides the design of an artificial ligand-binding controlled lipase. Scientific Reports, 2017, 7, 42592.                                                                   | 3.3 | 5         |
| 228 | The iSplit GFP assay detects intracellular recombinant proteins in Bacillus subtilis. Microbial Cell<br>Factories, 2021, 20, 174.                                                                                                 | 4.0 | 5         |
| 229 | Catalytically Active Inclusion Bodies─Benchmarking and Application in Flow Chemistry. ACS Synthetic<br>Biology, 2022, 11, 1881-1896.                                                                                              | 3.8 | 5         |
| 230 | Rhamnolipids: Production, Performance, and Application. , 2017, , 587-622.                                                                                                                                                        |     | 4         |
| 231 | High-Throughput Screening Assays for Lipolytic Enzymes. Methods in Molecular Biology, 2018, 1685, 209-231.                                                                                                                        | 0.9 | 4         |
| 232 | First Insights into the Genome Sequence of Pseudomonas oleovorans DSM 1045. Genome<br>Announcements, 2017, 5, .                                                                                                                   | 0.8 | 3         |
| 233 | Ternary Complex Formation and Photoactivation of a Photoenzyme Results in Altered Protein<br>Dynamics. Journal of Physical Chemistry B, 2019, 123, 7372-7384.                                                                     | 2.6 | 3         |
| 234 | Hydrocarbon-Degrading Microbes as Sources of New Biocatalysts. , 2019, , 353-373.                                                                                                                                                 |     | 3         |

14

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Overexpression and Secretion of Biocatalysts in Pseudomonas. , 2003, , .                                                                                                                                                                                    |     | 2         |
| 236 | Rhamnolipids: Production, Performance, and Application. , 2017, , 1-37.                                                                                                                                                                                     |     | 2         |
| 237 | Screening for Enantioselective Lipases. Springer Protocols, 2016, , 37-69.                                                                                                                                                                                  | 0.3 | 1         |
| 238 | Hydrocarbon-Degrading Microbes as Sources of New Biocatalysts. , 2018, , 1-21.                                                                                                                                                                              |     | 1         |
| 239 | lgni18, a novel metallo-hydrolase from the hyperthermophilic archaeon <i>Ignicoccus hospitalis</i> KIN4/I: cloning, expression, purification and X-ray analysis. Acta Crystallographica Section F,<br>Structural Biology Communications, 2019, 75, 307-311. | 0.8 | 1         |
| 240 | Heterologous Production of Plant Terpenes in the Photosynthetic Bacterium Rhodobacter capsulatus. Methods in Molecular Biology, 2022, 2379, 125-154.                                                                                                        | 0.9 | 1         |
| 241 | Lipase-Specific Foldases. ChemInform, 2004, 35, no.                                                                                                                                                                                                         | 0.0 | 0         |
| 242 | Bacterial Secretion Systems for Use in Biotechnology: Autotransporter-Based Cell Surface Display and Ultrahigh-Throughput Screening of Large Protein Libraries. Springer Protocols, 2015, , 87-103.                                                         | 0.3 | 0         |
| 243 | Screening for Enantioselective Enzymes. , 2017, , 289-308.                                                                                                                                                                                                  |     | 0         |
| 244 | Bestimmung der StabilitĤund EnantioselektivitĤvon Lipasen. BioSpektrum, 2018, 24, 156-159.                                                                                                                                                                  | 0.0 | 0         |
| 245 | Directed Evolution by Random Mutagenesis. , 2003, , .                                                                                                                                                                                                       |     | 0         |