
Christopher J Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5283257/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring functional metabolites in preterm infants. Acta Paediatrica, International Journal of Paediatrics, 2022, 111, 45-53.	1.5	8
2	Microbiome and paediatric gut diseases. Archives of Disease in Childhood, 2022, 107, 784-789.	1.9	4
3	Untangling human milk oligosaccharides and infant gut microbiome. IScience, 2022, 25, 103542.	4.1	39
4	Development of the gut microbiome in early life. Experimental Physiology, 2022, 107, 415-421.	2.0	21
5	Integrating longitudinal clinical and microbiome data to predict growth faltering in preterm infants. Journal of Biomedical Informatics, 2022, 128, 104031.	4.3	3
6	Secretory immunoglobulin A in preterm infants: determination of normal values in breast milk and stool. Pediatric Research, 2022, 92, 979-986.	2.3	7
7	Distinct gene expression profiles between human preterm-derived and adult-derived intestinal organoids exposed to <i>Enterococcus faecalis</i> : a pilot study. Gut, 2022, 71, 2141-2143.	12.1	10
8	The <scp>COLOâ€COHORT</scp> (Colorectal Cancer Cohort) study: Protocol for a multiâ€centre, observational research study and development of a consentâ€forâ€contact research platform. Colorectal Disease, 2022, 24, 1216-1226.	1.4	2
9	Importance of the Gut Microbiome in Preterm Infants. Nestle Nutrition Institute Workshop Series, 2022, 96, 141-148.	0.1	1
10	Diet Patterns, the Gut Microbiome, and Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 88, 933-941.	2.6	7
11	Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nature Communications, 2022, 13, .	12.8	13
12	Diet Patterns, the Gut Microbiome, and Alzheimerâ \in $^{ m Ms}$ Disease. Advances in Alzheimer's Disease, 2022, , .	0.2	0
13	Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut, 2021, 70, 2273-2282.	12.1	110
14	Using faecal immunochemical test (FIT) undertaken in a national screening programme for large-scale gut microbiota analysis. Gut, 2021, 70, gutjnl-2020-321594.	12.1	3
15	Stem cellâ€derived enteroid cultures as a tool for dissecting hostâ€parasite interactions in the small intestinal epithelium. Parasite Immunology, 2021, 43, e12765.	1.5	13
16	The Impact of <i>NOD2</i> Genetic Variants on the Gut Mycobiota in Crohn's Disease Patients in Remission and in Individuals Without Gastrointestinal Inflammation. Journal of Crohn's and Colitis, 2021, 15, 800-812.	1.3	22
17	Maternal breastmilk, infant gut microbiome and the impact on preterm infant health. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 450-457.	1.5	67
18	Endoscopic ultrasound (EUS)-guided fine needle biopsy (FNB) formalin fixed paraffin-embedded (FFPE) pancreatic tissue samples are a potential resource for microbiota analysis. Gut, 2021, 70, 999-1001.	12.1	10

#	Article	IF	CITATIONS
19	Cutaneous immuneâ€related adverse events in patients with melanoma treated with checkpoint inhibitors. British Journal of Dermatology, 2021, 185, 263-271.	1.5	35
20	An Observational Cohort Study and Nested Randomized Controlled Trial on Nutrition and Growth Outcomes in Moderate and Late Preterm Infants (FLAMINGO). Frontiers in Nutrition, 2021, 8, 561419.	3.7	5
21	Shifting sows: longitudinal changes in the periparturient faecal microbiota of primiparous and multiparous sows. Animal, 2021, 15, 100135.	3.3	13
22	Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Review of Proteomics, 2021, 18, 247-259.	3.0	13
23	Thirdhand smoke associations with the gut microbiomes of infants admitted to a neonatal intensive care unit: An observational study. Environmental Research, 2021, 197, 111180.	7.5	15
24	The Stool Volatile Metabolome of Pre-Term Babies. Molecules, 2021, 26, 3341.	3.8	7
25	Lactoferrin impact on gut microbiota in preterm infants with late-onset sepsis or necrotising enterocolitis: the MAGPIE mechanisms of action study. Efficacy and Mechanism Evaluation, 2021, 8, 1-88.	0.7	6
26	P304â€Using Faecal Immunochemical Tests (FIT) for large-scale gut microbiota analysis. , 2021, , .		0
27	Targeting Leukocyte Trafficking in Inflammatory Bowel Disease. BioDrugs, 2021, 35, 473-503.	4.6	4
28	Breastfeeding promotes bifidobacterial immunomodulatory metabolites. Nature Microbiology, 2021, 6, 1335-1336.	13.3	9
29	Increased Moraxella and Streptococcus species abundance after severe bronchiolitis is associated with recurrent wheezing. Journal of Allergy and Clinical Immunology, 2020, 145, 518-527.e8.	2.9	50
30	Altered Fecal Microbiome Years after Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 1037-1051.	3.4	60
31	Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nature Communications, 2020, 11, 4017.	12.8	81
32	SoftwarePilot: Fully Autonomous Aerial Systems Made Easier. , 2020, , .		3
33	Whole beetroot consumption reduces systolic blood pressure and modulates diversity and composition of the gut microbiota in older participants. NFS Journal, 2020, 21, 28-37.	4.3	14
34	Changes in Faecal Microbiota Profiles Associated With Performance and Birthweight of Piglets. Frontiers in Microbiology, 2020, 11, 917.	3.5	28
35	Establishing Human Intestinal Enteroid/Organoid Lines from Preterm Infant and Adult Tissue. Methods in Molecular Biology, 2020, 2121, 185-198.	0.9	20
36	Microbiota Analysis Using Sequencing by Synthesis: From Library Preparation to Sequencing. Methods in Molecular Biology, 2020, 2121, 165-184.	0.9	1

#	Article	IF	CITATIONS
37	Homing in on 12,13-diHOME in asthma. Nature Microbiology, 2019, 4, 1774-1775.	13.3	3
38	Impact of Early Life Antibiotic Exposure and Neonatal Hyperoxia on the Murine Microbiome and Lung Injury. Scientific Reports, 2019, 9, 14992.	3.3	13
39	The role of the preterm intestinal microbiome in sepsis and necrotising enterocolitis. Early Human Development, 2019, 138, 104854.	1.8	48
40	Elastic, geo-distributed RAFT. , 2019, , .		3
41	<i>Bacteroides ovatus</i> ATCC 8483 monotherapy is superior to traditional fecal transplant and multi-strain bacteriotherapy in a murine colitis model. Gut Microbes, 2019, 10, 504-520.	9.8	59
42	Serum Metabolome Is Associated With the Nasopharyngeal Microbiota and Disease Severity Among Infants With Bronchiolitis. Journal of Infectious Diseases, 2019, 219, 2005-2014.	4.0	24
43	Changes in stool frequency following chicory inulin consumption, and effects on stool consistency, quality of life and composition of gut microbiota. Food Hydrocolloids, 2019, 96, 688-698.	10.7	33
44	Mucosal lactoferrin response to genital tract infections is associated with iron and nutritional biomarkers in young Burkinabé women. European Journal of Clinical Nutrition, 2019, 73, 1464-1472.	2.9	14
45	Association of respiratory viruses with serum metabolome in infants with severe bronchiolitis. Pediatric Allergy and Immunology, 2019, 30, 848-851.	2.6	14
46	Using formalin fixed paraffin embedded tissue to characterize the preterm gut microbiota in necrotising enterocolitis and spontaneous isolated perforation using marginal and diseased tissue. BMC Microbiology, 2019, 19, 52.	3.3	24
47	The Microbiome, Metabolome, and Proteome in Preterm Neonatal Sepsis. , 2019, , 279-285.		0
48	Insular resting state functional connectivity is associated with gut microbiota diversity. European Journal of Neuroscience, 2019, 50, 2446-2452.	2.6	35
49	Brief guide to the analysis, interpretation and presentation of microbiota data. Archives of Disease in Childhood: Education and Practice Edition, 2018, 103, edpract-2017-313838.	0.5	1
50	Relationships Between Perinatal Interventions, Maternal-Infant Microbiomes, and Neonatal Outcomes. Clinics in Perinatology, 2018, 45, 339-355.	2.1	29
51	Serum 25â€hydroxyvitamin D, metabolome, and bronchiolitis severity among infants—A multicenter cohort study. Pediatric Allergy and Immunology, 2018, 29, 441-445.	2.6	7
52	Circulating 25â€hydroxyvitamin D, nasopharyngeal airway metabolome, and bronchiolitis severity. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1135-1140.	5.7	12
53	Respiratory Syncytial Virus and Rhinovirus Bronchiolitis Are Associated With Distinct Metabolic Pathways. Journal of Infectious Diseases, 2018, 217, 1160-1169.	4.0	50
54	Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi. MSphere, 2018, 3, .	2.9	173

CHRISTOPHER J STEWART

#	Article	IF	CITATIONS
55	Impact of Age-Related Mitochondrial Dysfunction and Exercise on Intestinal Microbiota Composition. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 571-578.	3.6	28
56	Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study. PeerJ, 2018, 6, e4693.	2.0	84
57	Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nature Communications, 2018, 9, 5010.	12.8	130
58	Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature, 2018, 562, 583-588.	27.8	1,220
59	The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature, 2018, 562, 589-594.	27.8	623
60	695: Visualization of intact placental microbes in both term and preterm births. American Journal of Obstetrics and Gynecology, 2018, 218, S417-S418.	1.3	2
61	Tu1847 - Bacteroides Ovatus Monotherapy is Sufficient to Suppress Intestinal Inflammation in a Murine Colitis Model. Gastroenterology, 2018, 154, S-1036-S-1037.	1.3	0
62	Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia, 2018, 61, 1700-1711.	6.3	74
63	Gut microbiota of Type 1 diabetes patients with good glycaemic control and high physical fitness is similar to people without diabetes: an observational study. Diabetic Medicine, 2017, 34, 127-134.	2.3	45
64	303: Metabolite changes in second trimester amniotic fluid are predicative of spontaneous preterm birth in a pilot study of at risk patients. American Journal of Obstetrics and Gynecology, 2017, 216, S186.	1.3	0
65	22: The hepatic expressed circadian gene, npas2, influences the developing got microbiome with restricted feeding. American Journal of Obstetrics and Gynecology, 2017, 216, S16.	1.3	0
66	Conditional postnatal deletion of the neonatal murine hepatic circadian gene, Npas2, alters the gut microbiome following restricted feeding. American Journal of Obstetrics and Gynecology, 2017, 217, 218.e1-218.e15.	1.3	8
67	Associations of Nasopharyngeal Metabolome and Microbiome with Severity among Infants with Bronchiolitis. A Multiomic Analysis. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 882-891.	5.6	113
68	The hepatic expressed circadian gene Npas2 influences the metabolic response to a restricted feeding diet and the developing gut microbiome. Fertility and Sterility, 2017, 108, e254-e255.	1.0	0
69	Cesarean or Vaginal Birth Does Not Impact the Longitudinal Development of the Gut Microbiome in a Cohort of Exclusively Preterm Infants. Frontiers in Microbiology, 2017, 8, 1008.	3.5	46
70	Mechanisms Affecting the Gut of Preterm Infants in Enteral Feeding Trials. Frontiers in Nutrition, 2017, 4, 14.	3.7	50
71	Effects of long-term weekly iron and folic acid supplementation on lower genital tract infection – a double blind, randomised controlled trial in Burkina Faso. BMC Medicine, 2017, 15, 206.	5.5	19
72	Longitudinal development of the gut microbiome and metabolome in preterm neonates with late onset sepsis and healthy controls. Microbiome, 2017, 5, 75.	11.1	206

CHRISTOPHER J STEWART

#	Article	IF	CITATIONS
73	The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome, 2017, 5, 153.	11.1	609
74	Sphingolipid metabolism potential in fecal microbiome and bronchiolitis in infants: a case–control study. BMC Research Notes, 2017, 10, 325.	1.4	22
75	Gut Microbiota and Lifestyle Interventions in NAFLD. International Journal of Molecular Sciences, 2016, 17, 447.	4.1	75
76	Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome, 2016, 4, 67.	11.1	135
77	Una destinatio, viae diversae. EMBO Reports, 2016, 17, 1679-1684.	4.5	34
78	Microbiological profiles of sputum and gastric juice aspirates in Cystic Fibrosis patients. Scientific Reports, 2016, 6, 26985.	3.3	50
79	Functional changes in gut microbiota during hematopoietic stem cell transplantation for severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2016, 138, 622-625.e3.	2.9	8
80	Cytomegalovirus and other common enteric viruses are not commonly associated with NEC. Acta Paediatrica, International Journal of Paediatrics, 2016, 105, 50-52.	1.5	12
81	Metabolomic and proteomic analysis of serum from preterm infants with necrotising entercolitis and late-onset sepsis. Pediatric Research, 2016, 79, 425-431.	2.3	60
82	Routine Use of Probiotics in Preterm Infants: Longitudinal Impact on the Microbiome and Metabolome. Neonatology, 2016, 109, 239-247.	2.0	76
83	Stool bacterial load in preterm infants with necrotising enterocolitis. Early Human Development, 2016, 95, 1-2.	1.8	18
84	Preterm gut microbiota and metabolome following discharge from intensive care. Scientific Reports, 2015, 5, 17141.	3.3	39
85	Gut bacteria and necrotizing enterocolitis: cause or effect?. Trends in Microbiology, 2015, 23, 332-333.	7.7	10
86	Gut microbiome variations during hematopoietic stem cell transplant in severe combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2015, 135, 1654-1656.e2.	2.9	18
87	Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems. Journal of Applied Microbiology, 2015, 119, 208-214.	3.1	33
88	The neonatal bowel microbiome in health and infection. Current Opinion in Infectious Diseases, 2014, 27, 236-243.	3.1	59
89	Detecting specific infections in children through host responses. Current Opinion in Infectious Diseases, 2014, 27, 228-235.	3.1	27
90	Proportionate Reduction in Uncertainty of Late Onset Infection in Pre-term Infants by Neutrophil CD64 Measurement. Fetal and Pediatric Pathology, 2014, 33, 16-22.	0.7	4

#	Article	IF	CITATIONS
91	Polymicrobial airway bacterial communities in adult bronchiectasis patients. BMC Microbiology, 2014, 14, 130.	3.3	50
92	Lactoferrin: Antimicrobial activity and therapeutic potential. Seminars in Fetal and Neonatal Medicine, 2013, 18, 143-149.	2.3	104
93	Gut microbiota in preterm infants: assessment and relevance to health and disease. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2013, 98, F286-F290.	2.8	79
94	Bacterial and fungal viability in the preterm gut: NEC and sepsis. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2013, 98, F298-F303.	2.8	61
95	Development of the Preterm Gut Microbiome in Twins at Risk of Necrotising Enterocolitis and Sepsis. PLoS ONE, 2013, 8, e73465.	2.5	114
96	Early Gut Microbiome and Polymicrobial Infection. , 2013, , 1-9.		0
97	The preterm gut microbiota: changes associated with necrotizing enterocolitis and infection. Acta	1.5	141