Valfredo A Lemos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5281323/publications.pdf

Version: 2024-02-01

76326 123424 4,422 123 40 61 citations h-index g-index papers 124 124 124 3034 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In-syringe dispersive liquid-liquid microextraction. Talanta, 2022, 238, 123002.	5.5	18
2	Switchable-hydrophilicity solvent-based liquid-phase microextraction in an on-line system: Cobalt determination in food and water samples. Talanta, 2022, 238, 123038.	5 . 5	15
3	Deep eutectic solvents in liquid-phase microextraction: Contribution to green chemistry. TrAC - Trends in Analytical Chemistry, 2022, 146, 116478.	11.4	73
4	A new green method employing ultrasonic-assisted liquid-phase microextraction and digital imaging colorimetry for the determination of mefenamic acid in medicinal products. Microchemical Journal, 2022, 179, 107538.	4.5	1
5	Deep eutectic solvent in ultrasound-assisted liquid-phase microextraction for determination of vanadium in food and environmental waters. Microchemical Journal, 2022, 180, 107543.	4.5	5
6	Determination of Cu, Ni, Mn, and Pb in diesel oil samples using reversed-phase vortex-assisted liquid-liquid microextraction associated with energy dispersive X-ray fluorescence spectrometry. Talanta, 2021, 222, 121514.	5 . 5	17
7	Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Based on Melting of the Donor Phase: a New Approach for the Determination of Trace Elements in Solid Samples. Food Analytical Methods, 2021, 14, 596-605.	2.6	6
8	A novel direct-immersion single-drop microextraction combined with digital colorimetry applied to the determination of vanadium in water. Talanta, 2021, 224, 121893.	5 . 5	23
9	Multivariate optimization of ultrasound-assisted liquid–liquid microextraction based on two solvents for cadmium preconcentration prior to determination by flame atomic absorption spectrometry. Analytical Methods, 2021, 13, 267-273.	2.7	8
10	Conversion of an invasive plant into a new solid phase for lead preconcentration for analytical purpose. Environmental Technology and Innovation, 2021, 21, 101336.	6.1	7
11	Multivariate optimization of a dispersive liquid-liquid microextraction method for determination of copper and manganese in coconut water by FAAS. Food Chemistry, 2021, 365, 130473.	8.2	22
12	Application of mixture design in analytical chemistry. Microchemical Journal, 2020, 152, 104336.	4. 5	40
13	Emulsification solidified floating organic drop microextraction assisted by ultrasound for the determination of nickel, cobalt and copper in oyster and fish samples. Analytical Methods, 2020, 12, 865-871.	2.7	13
14	Strategies for inorganic speciation analysis employing spectrometric techniques–Review. Microchemical Journal, 2020, 153, 104402.	4. 5	13
15	A New Simple and Fast Method for Determination of Cobalt in Vitamin B12 and Water Samples Using Dispersive Liquid-Liquid Microextraction and Digital Image Analysis. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	12
16	A Miniaturized Gas-Liquid Separator for Use in Liquid-Phase Microextraction Procedures: Determination of Mercury in Food. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	4
17	Solid-Phase Extraction and Detection by Digital Image Directly in the Sorbent: Determination of Nickel in Environmental Samples. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	7
18	Strategies to Make Methods Based on Flow Injection Analysis Greener. Clean - Soil, Air, Water, 2020, 48, 2000007.	1.1	4

#	Article	IF	CITATIONS
19	Pressure variation in-syringe dispersive liquid-liquid microextraction associated with digital image colorimetry: Determination of cobalt in food samples. Microchemical Journal, 2020, 157, 105064.	4.5	20
20	Direct Immersion Single-Drop Microextraction and Continuous-Flow Microextraction for the Determination of Manganese in Tonic Drinks and Seafood Samples. Food Analytical Methods, 2020, 13, 1681-1689.	2.6	13
21	Automation of continuous flow analysis systems – a review. Microchemical Journal, 2020, 155, 104731.	4.5	24
22	Determination of cadmium in bread and biscuit samples using ultrasoundâ€essisted temperatureâ€controlled ionic liquid microextraction. Journal of the Science of Food and Agriculture, 2019, 99, 4609-4614.	3 . 5	13
23	A new method for the speciation of arsenic species in water, seafood and cigarette samples using an eggshell membrane. Journal of the Iranian Chemical Society, 2019, 16, 1879-1889.	2.2	3
24	A closed inline system for sample digestion using 70% hydrogen peroxide and UV radiation. Determination of lead in wine employing ETAAS. Talanta, 2019, 191, 479-484.	5.5	8
25	Liquid phase microextraction associated with flow injection systems for the spectrometric determination of trace elements. TrAC - Trends in Analytical Chemistry, 2019, 110, 357-366.	11.4	28
26	A novel strategy based on in-syringe dispersive liquid-liquid microextraction for the determination of nickel in chocolate samples. Talanta, 2019, 193, 23-28.	5.5	34
27	Multivariate optimization techniques in analytical chemistry - an overview. Microchemical Journal, 2018, 140, 176-182.	4.5	91
28	Ultrasound-Assisted Emulsification Microextraction in an Online System for Determination of Cadmium in Water and Tea Samples. Journal of AOAC INTERNATIONAL, 2018, 101, 1647-1652.	1.5	6
29	An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchemical Journal, 2018, 143, 175-180.	4.5	35
30	Preparation and characterization of a new reference material for the inorganic analysis of corn flour. Accreditation and Quality Assurance, 2017, 22, 37-43.	0.8	4
31	Methods of liquid phase microextraction for the determination of cadmium in environmental samples. Environmental Monitoring and Assessment, 2017, 189, 444.	2.7	7
32	Direct and Simultaneous Determination of Copper and Iron in Flours by Solid Sample Analysis and High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Food Analytical Methods, 2017, 10, 469-476.	2.6	13
33	Development of a method for the determination of cadmium levels in seawater by flame atomic absorption spectrometry using an online cloud-point extraction system. Turkish Journal of Chemistry, 2016, 40, 1055-1063.	1.2	3
34	A Method Using Liquid-Liquid Microextraction in a Dynamic System for Preconcentration and Determination of Lead in Food Samples. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	8
35	Applications of biosorbents in atomic spectrometry. Applied Spectroscopy Reviews, 2016, 51, 36-72.	6.7	11
36	Application of Simplex Optimization in the Development of an On-line Preconcentration System for the Determination of Cu in Human Hair Samples Using FAAS. Current Analytical Chemistry, 2016, 12, 573-579.	1.2	2

#	Article	IF	CITATIONS
37	Homogeneity study of a corn flour laboratory reference material candidate for inorganic analysis. Food Chemistry, 2015, 178, 287-291.	8.2	18
38	A New Functionalized Resin for Preconcentration and Determination of Cadmium, Cobalt, and Nickel in Sediment Samples. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	10
39	Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 107, 159-163.	2.9	43
40	Determination of Vanadium Levels in Seafood Using Dispersive Liquid-Liquid Microextraction and Optical Sensors. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	8
41	Development of a Method Using Ultrasound-Assisted Emulsification Microextraction for the Determination of Nickel in Water Samples. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	13
42	Analytical strategies of sample preparation for the determination of mercury in food matrices â€" A review. Microchemical Journal, 2015, 121, 227-236.	4.5	79
43	Ultrasound-assisted temperature-controlled ionic liquid microextraction for the preconcentration and determination of cadmium content in mussel samples. Food Control, 2015, 50, 901-906.	5.5	28
44	Method for the determination of cadmium, lead, nickel, cobalt and copper in seafood after dispersive liquid–liquid micro-extraction. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1872-1878.	2.3	26
45	A new method for preconcentration and determination of mercury in fish, shellfish and saliva by cold vapour atomic absorption spectrometry. Food Chemistry, 2014, 149, 203-207.	8.2	44
46	Development of an On-line Preconcentration System for Determination of Mercury in Environmental Samples. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	8
47	Evaluation of Two Statistical Tools (Least Squares Regression and Artificial Neural Network) in the Multivariate Optimization of Solid-Phase Extraction for Cadmium Determination in Leachate Samples. Journal of the Brazilian Chemical Society, 2014, , .	0.6	0
48	Sensitive determination of trace molybdenum in natural waters using dispersive liquid–liquid microextraction and electrothermal atomic absorption spectrometry. Analytical Methods, 2013, 5, 2098.	2.7	8
49	An on-line preconcentration system for the determination of selenium in seawater samples. Analytical Methods, 2013, 5, 4501.	2.7	4
50	Single-drop microextraction for the determination of manganese in seafood and water samples. Mikrochimica Acta, 2013, 180, 501-507.	5.0	20
51	Assessment of cadmium and lead in commercially important seafood from São Francisco do Conde, Bahia, Brazil. Food Control, 2013, 33, 193-199.	5.5	31
52	Use of Functionalized Resin for Matrix Separation and Trace Elements Determination in Petroleum Produced Formation Water by Inductively Coupled Plasma Mass Spectrometry., 2012, 2012, 1-8.		2
53	Spectrophotometric Determination of Mercury in Water Samples After Preconcentration Using Dispersive Liquid–Liquid Microextraction. Journal of AOAC INTERNATIONAL, 2012, 95, 227-231.	1.5	10
54	Determination of lead in water samples after its separation and preconcentration by 4,5-dihydroxy-1,3-benzenedisulfonic acid functionalised polyurethane foam. International Journal of Environmental Analytical Chemistry, 2012, 92, 1121-1134.	3.3	4

#	Article	IF	Citations
55	Determination of arsenic in chicken feed by hydride generation atomic absorption spectrometry after pre-concentration with polyurethane foam. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1689-1695.	2.3	7
56	Dispersive liquid-liquid microextraction for simultaneous determination of cadmium, cobalt, lead and nickel in water samples by inductively coupled plasma optical emission spectrometry. Mikrochimica Acta, 2012, 178, 269-275.	5.0	52
57	Dispersive Liquid–Liquid Microextraction for Preconcentration and Determination of Nickel in Water. Clean - Soil, Air, Water, 2012, 40, 268-271.	1.1	13
58	A preconcentration procedure for the determination of cadmium in biological material after on-line cloud point extraction. Environmental Monitoring and Assessment, 2012, 184, 4455-4460.	2.7	16
59	Synthesis and Application of a New Thiazolylazo Reagent for Cloud Point Extraction and Determination of Cobalt in Pharmaceutical Preparations. Journal of AOAC INTERNATIONAL, 2011, 94, 1304-1309.	1.5	5
60	Determination of Lead and Manganese in Biological Samples and Sediment Using Slurry Sampling and Flame Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 2011, 94, 645-649.	1.5	8
61	Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation. Food Chemistry, 2011, 127, 780-783.	8.2	107
62	On-line simultaneous pre-concentration procedure for the determination of cadmium and lead in drinking water employing sequential multi-element flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2011, 91, 1425-1435.	3.3	9
63	Determination of copper, iron, lead and zinc in gasoline by sequential multi-element flame atomic absorption spectrometry after solid phase extraction. Journal of the Brazilian Chemical Society, 2011, 22, 552-557.	0.6	28
64	An online preconcentration system for the determination of uranium in water and effluent samples. Environmental Monitoring and Assessment, 2010, 171, 163-169.	2.7	19
65	Determination of cadmium and lead in human biological samples by spectrometric techniques: a review. Environmental Monitoring and Assessment, 2010, 171, 255-265.	2.7	68
66	Determination of cobalt and manganese in food seasonings by flame atomic absorption spectrometry after preconcentration with 2-hydroxyacetophenone-functionalized polyurethane foam. Journal of Food Composition and Analysis, 2010, 23, 277-281.	3.9	43
67	An on-line cloud point extraction system for flame atomic absorption spectrometric determination of trace manganese in food samples. Microchemical Journal, 2010, 94, 42-47.	4.5	66
68	Uranium determination using atomic spectrometric techniques: An overview. Analytica Chimica Acta, 2010, 674, 143-156.	5.4	136
69	Application of simplex optimization in the development of an automated online preconcentration system for manganese determination. Journal of the Brazilian Chemical Society, 2010, 21, 2340-2346.	0.6	12
70	Thermospray generation directly into a flame furnaceâ€"An alternative to improve the detection power in atomic absorption spectrometry. Talanta, 2010, 82, 437-443.	5.5	15
71	Aplicação de um corante tiazolilazo como indicador ácido-base e determinação das suas constantes de ionização ácida. Quimica Nova, 2009, 32, 1943-1946.	0.3	3
72	Determination of copper in biological samples by flame atomic absorption spectrometry after precipitation with Me-BTAP. Environmental Monitoring and Assessment, 2009, 148, 245-253.	2.7	24

#	Article	IF	Citations
73	A procedure for determination of cobalt in water samples after dispersive liquid–liquid microextraction. Microchemical Journal, 2009, 93, 220-224.	4.5	101
74	An automated preconcentration system for the determination of manganese in food samples. Journal of Food Composition and Analysis, 2009, 22, 337-342.	3.9	30
75	Flow injection preconcentration system using a new functionalized resin for determination of cadmium and nickel in tobacco samples. Journal of Hazardous Materials, 2008, 155, 128-134.	12.4	49
76	On-line preconcentration using a resin functionalized with 3,4-dihydroxybenzoic acid for the determination of trace elements in biological samples by thermospray flame furnace atomic absorption spectrometry. Journal of Hazardous Materials, 2008, 157, 613-619.	12.4	42
77	Development of a cloud-point extraction method for copper and nickel determination in food samples. Journal of Hazardous Materials, 2008, 159, 245-251.	12.4	45
78	New Materials for Solidâ€Phase Extraction of Trace Elements. Applied Spectroscopy Reviews, 2008, 43, 303-334.	6.7	151
79	Development of a new sequential injection in-line cloud point extraction system for flame atomic absorption spectrometric determination of manganese in food samples. Talanta, 2008, 77, 388-393.	5.5	59
80	Automatic on-line pre-concentration system using a knotted reactor for the FAAS determination of lead in drinking water. Journal of Hazardous Materials, 2007, 141, 540-545.	12.4	23
81	On-line system for preconcentration and determination of metals in vegetables by Inductively Coupled Plasma Optical Emission Spectrometry. Journal of Hazardous Materials, 2007, 148, 334-339.	12.4	65
82	Review of procedures involving separation and preconcentration for the determination of cadmium using spectrometric techniques. Journal of Hazardous Materials, 2007, 145, 358-367.	12.4	106
83	Determination of cobalt, copper and nickel in food samples after pre-concentration on a new pyrocatechol-functionalized polyurethane foam sorbent. Reactive and Functional Polymers, 2007, 67, 573-581.	4.1	33
84	Application of polyurethane foam as a sorbent for trace metal pre-concentration â€" A review. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 4-12.	2.9	121
85	Cloud point extraction for Co and Ni determination in water samples by flame atomic absorption spectrometry. Separation and Purification Technology, 2007, 54, 349-354.	7.9	102
86	A comparative study of two sorbents for copper in a flow injection preconcentration system. Separation and Purification Technology, 2007, 56, 212-219.	7.9	35
87	Determination of copper in water samples by atomic absorption spectrometry after cloud point extraction. Mikrochimica Acta, 2007, 157, 215-222.	5.0	48
88	Thiazolylazo dyes and their application in analytical methods. Mikrochimica Acta, 2007, 158, 189-204.	5.0	54
89	Mercury determination in petroleum products by electrothermal atomic absorption spectrometry after in situ preconcentration using multiple injections. Journal of Analytical Atomic Spectrometry, 2006, 21, 1327.	3.0	29
90	Separation and preconcentration procedures for the determination of lead using spectrometric techniques: A review. Talanta, 2006, 69, 16-24.	5.5	213

#	Article	IF	CITATIONS
91	A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry. Analytica Chimica Acta, 2006, 575, 133-137.	5.4	67
92	Synthesis of amberlite XAD-2-PC resin for preconcentration and determination of trace elements in food samples by flame atomic absorption spectrometry. Microchemical Journal, 2006, 84, 14-21.	4.5	81
93	Preconcentration system for cadmium and lead determination in environmental samples using polyurethane foam/Me-BTANC. Journal of Hazardous Materials, 2006, 136, 757-762.	12.4	98
94	Preconcentration Systems Using Polyurethane Foam/Me-BDBD for Determination of Copper in Food Samples. Mikrochimica Acta, 2006, 153, 193-201.	5.0	15
95	On-Line Preconcentration and Determination of Cadmium, Cobalt and Nickel in Food Samples by Flame Atomic Absorption Spectrometry Using a New Functionalized Resin. Mikrochimica Acta, 2006, 153, 179-186.	5.0	45
96	Chromotropic acid-functionalized polyurethane foam: A new sorbent for on-line preconcentration and determination of cobalt and nickel in lettuce samples. Journal of Separation Science, 2006, 29, 1197-1204.	2.5	22
97	Me-BTABr reagent in cloud point extraction for spectrometric determination of copper in water samples. Journal of the Brazilian Chemical Society, 2006, 17, 30-35.	0.6	41
98	Synthesis and application of XAD-2/Me-BTAP resin for on-line solid phase extraction and determination of trace metals in biological samples by FAAS. Journal of the Brazilian Chemical Society, 2006, 17, 697-704.	0.6	21
99	Synthesis and application of XAD-2/Me-BTAP resin for on-line solid phase extraction and determination of trace metals in biological samples by FAAS. Journal of the Brazilian Chemical Society, 2006, 17, 1452-1452.	0.6	0
100	Synthesis and Application of a New Functionalized Resin in Onâ€Line Preconcentration of Lead. Separation Science and Technology, 2005, 40, 1401-1414.	2.5	14
101	Determination of Copper, Iron, Nickel, and Zinc in Ethanol Fuel by Flame Atomic Absorption Spectrometry Using Onâ€Line Preconcentration System. Separation Science and Technology, 2005, 40, 2555-2565.	2.5	52
102	A new functionalized resin and its application in preconcentration system with multivariate optimization for nickel determination in food samples. Talanta, 2005, 66, 174-180.	5.5	37
103	Amberlite XAD-2 functionalized with 2-aminothiophenol as a new sorbent for on-line preconcentration of cadmium and copper. Talanta, 2005, 67, 564-570.	5 . 5	132
104	Onâ€Line Solid Phase Extraction and Determination of Copper in Food Samples Using Polyurethane Foam Loaded with Meâ€BTANC. Analytical Letters, 2005, 38, 683-696.	1.8	24
105	Synthesis of α-Nitroso-β-Naphthol Modified Amberlite XAD-2 Resin and its Application in On-Line Solid Phase Extraction System for Cobalt Preconcentration. Separation Science and Technology, 2004, 39, 3317-3330.	2.5	24
106	Use of factorial design and Doehlert matrix for multivariate optimisation of an on-line preconcentration system for lead determination by flame atomic absorption spectrometry. Analytical and Bioanalytical Chemistry, 2003, 375, 443-449.	3.7	69
107	Amberlite XAD-2 functionalized with Nitroso R salt: synthesis and application in an online system for preconcentration of cobalt. Analytica Chimica Acta, 2003, 494, 87-95.	5.4	41
108	On-line preconcentration system using a minicolumn of polyurethane foam loaded with Me-BTABr for zinc determination by Flame Atomic Absorption Spectrometry. Analytica Chimica Acta, 2003, 481, 283-290.	5.4	49

#	Article	IF	CITATIONS
109	Synthesis and application of a functionalized resin in on-line system for copper preconcentration and determination in foods by flame atomic absorption spectrometry. Talanta, 2003, 61, 675-682.	5.5	48
110	An on-line system for preconcentration and determination of lead in wine samples by FAAS. Talanta, 2002, 58, 475-480.	5 . 5	70
111	An automated on-line flow system for the pre-concentration and determination of lead by flame atomic absorption spectrometry. Microchemical Journal, 2001, 68, 41-46.	4.5	45
112	On-line preconcentration system for lead determination in seafood samples by flame atomic absorption spectrometry using polyurethane foam loaded with 2-(2-benzothiazolylazo)-2-p-cresol. Analytica Chimica Acta, 2001, 441, 281-289.	5.4	86
113	On-line preconcentration system for nickel determination in food samples by flame atomic absorption spectrometry. Analytica Chimica Acta, 2001, 445, 145-151.	5.4	104
114	An on-line continuous flow system for copper enrichment and determination by flame atomic absorption spectroscopy. Analytica Chimica Acta, 2000, 403, 259-264.	5.4	97
115	Application of polyurethane foam loaded with BTAC in an on-line preconcentration system: cadmium determination by FAAS. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1497-1502.	2.9	49
116	Copper determination in natural water samples by using FAAS after preconcentration onto amberlite XAD-2 loaded with calmagite. Talanta, 2000, 50, 1253-1259.	5 . 5	96
117	Selectivity enhancement in spectrophotometry: on-line interference suppression using polyurethane foam minicolumn for aluminum determination with Methyl Thymol Blue. Analyst, The, 1999, 124, 805-808.	3.5	36
118	Spectrophotometric Determination of Aluminium in Iron Ores Using Solid-Phase Extraction. Journal of the Brazilian Chemical Society, 1998, 9, 151-156.	0.6	8
119	Sensitive spectrophotometric determination of ascorbic acid in fruit juices and pharmaceutical formulations using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP). Fresenius' Journal of Analytical Chemistry, 1997, 357, 1174-1178.	1.5	43
120	Application of a Novel Ion-Imprinted Polymer to the Separation of Traces of CdII Ions in Natural Water: Optimization by Box-Behnken Design. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
121	Use of Arduino in the Development of a New and Fast Automated Online Preconcentration System Based on Double-Knotted Reactor for the Mn Determination in Tea Samples by Flame Atomic Absorption Spectrometry (F AAS). Journal of the Brazilian Chemical Society, 0, , .	0.6	1
122	Yellow Mombin (Spondias mombin L.) Seeds from Agro-Industrial Waste as a Novel Adsorbent for Removal of Hexavalent Chromium from Aqueous Solutions. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
123	Vortex-Assisted Ionic Liquid-Based Liquid-Phase Microextraction: A Simple, Low-Cost, and Environmentally Friendly Method for Speciation of Antimony in Water. Journal of the Brazilian Chemical Society, 0, , .	0.6	1