List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5280686/publications.pdf Version: 2024-02-01

REDNHADD HURE

#	Article	IF	CITATIONS
1	Candidalysins Are a New Family of Cytolytic Fungal Peptide Toxins. MBio, 2022, 13, e0351021.	4.1	18
2	Membrane protective role of autophagic machinery during infection of epithelial cells by <i>Candida albicans</i> . Gut Microbes, 2022, 14, 2004798.	9.8	6
3	Emergence and evolution of virulence in human pathogenic fungi. Trends in Microbiology, 2022, 30, 693-704.	7.7	29
4	Calcium-dependent ESCRT recruitment and lysosome exocytosis maintain epithelial integrity during Candida albicans invasion. Cell Reports, 2022, 38, 110187.	6.4	31
5	From environmental adaptation to host survival: Attributes that mediate pathogenicity of <i>Candida auris</i> . Virulence, 2022, 13, 191-214.	4.4	24
6	Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature, 2022, 603, 672-678.	27.8	98
7	Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nature Communications, 2022, 13, .	12.8	30
8	Fungal factors involved in host immune evasion, modulation and exploitation during infection. Cellular Microbiology, 2021, 23, e13272.	2.1	17
9	The impact of the Fungus-Host-Microbiota interplay upon <i>Candida albicans</i> infections: current knowledge and new perspectives. FEMS Microbiology Reviews, 2021, 45, .	8.6	139
10	Metabolic modeling predicts specific gut bacteria as key determinants for <i>Candida albicans</i> colonization levels. ISME Journal, 2021, 15, 1257-1270.	9.8	23
11	Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria. Computational and Structural Biotechnology Journal, 2021, 19, 1244-1252.	4.1	8
12	Experimental Evolution of Candida by Serial Passaging in Host Cells. Methods in Molecular Biology, 2021, 2260, 145-154.	0.9	3
13	Candida albicans Interaction with Oral : Adhesion, , and Damage Assays. Methods in Molecular Biology, 2021, 2260, 133-143.	0.9	5
14	<i>In vitro</i> infection models to study fungal–host interactions. FEMS Microbiology Reviews, 2021, 45, .	8.6	16
15	Candida pathogens induce protective mitochondria-associated type I interferon signalling and a damage-driven response in vaginal epithelial cells. Nature Microbiology, 2021, 6, 643-657.	13.3	49
16	Fungal pathogenesis: A new venom. Current Biology, 2021, 31, R391-R394.	3.9	1
17	Transient Mitochondria Dysfunction Confers Fungal Cross-Resistance against Phagocytic Killing and Fluconazole. MBio, 2021, 12, e0112821.	4.1	15
18	Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cellular Microbiology, 2021, 23, e13371.	2.1	23

#	Article	IF	CITATIONS
19	Albumin Neutralizes Hydrophobic Toxins and Modulates <i>Candida albicans</i> Pathogenicity. MBio, 2021, 12, e0053121.	4.1	14
20	Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by <i>Candida albicans</i> . Cellular Microbiology, 2021, 23, e13378.	2.1	33
21	A variant ECE1 allele contributes to reduced pathogenicity of Candida albicans during vulvovaginal candidiasis. PLoS Pathogens, 2021, 17, e1009884.	4.7	35
22	The fungivorous amoeba <i>Protostelium aurantium</i> targets redox homeostasis and cell wall integrity during intracellular killing of <i>Candida parapsilosis</i> . Cellular Microbiology, 2021, 23, e13389.	2.1	6
23	Cover Image: Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by <i>Candida albicans</i> (Cellular Microbiology 10/2021). Cellular Microbiology, 2021, 23, e13393.	2.1	0
24	Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity, 2021, 54, 2595-2610.e7.	14.3	47
25	Adenosine Triphosphate Released by Candida albicans Is Associated with Reduced Skin Infectivity. Journal of Investigative Dermatology, 2021, 141, 2306-2310.	0.7	2
26	<i>Candida albicans</i> â€induced leukotriene biosynthesis in neutrophils is restricted to the hyphal morphology. FASEB Journal, 2021, 35, e21820.	0.5	8
27	Cover Image: The fungivorous amoeba <i>Protostelium aurantium</i> targets redox homeostasis and cell wall integrity during intracellular killing of <i>Candida parapsilosis</i> (Cellular Microbiology) Tj ETQq1 1 0.	784 3.1 4 rgl	3T Øverlock
28	Human albumin enhances the pathogenic potential of Candida glabrata on vaginal epithelial cells. PLoS Pathogens, 2021, 17, e1010037.	4.7	5
29	A <i>TRP1</i> -marker-based system for gene complementation, overexpression, reporter gene expression and gene modification in <i>Candida glabrata</i> . FEMS Yeast Research, 2021, 20, .	2.3	2
30	B Cell Recognition of Candida albicans Hyphae via TLR 2 Promotes IgG1 and IL-6 Secretion for TH17 Differentiation. Frontiers in Immunology, 2021, 12, 698849.	4.8	11
31	Functionality of the human antibody response to <i>Candida albicans</i> . Virulence, 2021, 12, 3137-3148.	4.4	9
32	The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. Journal of Hepatology, 2020, 72, 391-400.	3.7	119
33	Effects of histatin 5 modifications on antifungal activity and kinetics of proteolysis. Protein Science, 2020, 29, 480-493.	7.6	19
34	Cooperative Role of MAPK Pathways in the Interaction of Candida albicans with the Host Epithelium. Microorganisms, 2020, 8, 48.	3.6	14
35	Survival Strategies of Pathogenic <i>Candida</i> Species in Human Blood Show Independent and Specific Adaptations. MBio, 2020, 11, .	4.1	29
36	Lysosome Fusion Maintains Phagosome Integrity during Fungal Infection. Cell Host and Microbe, 2020, 28, 798-812.e6.	11.0	56

#	Article	IF	CITATIONS
37	The Dual Function of the Fungal Toxin Candidalysin during Candida albicans—Macrophage Interaction and Virulence. Toxins, 2020, 12, 469.	3.4	28
38	Characterization of a Candida albicans Mutant Defective in All MAPKs Highlights the Major Role of Hog1 in the MAPK Signaling Network. Journal of Fungi (Basel, Switzerland), 2020, 6, 230.	3.5	9
39	<i>Candida albicans</i> adhesion to central venous catheters: Impact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence, 2020, 11, 1453-1465.	4.4	16
40	Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans. MBio, 2020, 11, .	4.1	24
41	Candidalysin Is a Potent Trigger of Alarmin and Antimicrobial Peptide Release in Epithelial Cells. Cells, 2020, 9, 699.	4.1	32
42	The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Current Opinion in Microbiology, 2020, 56, 7-15.	5.1	87
43	Candida albicans Mrv8, is involved in epithelial damage and biofilm formation. FEMS Yeast Research, 2020, 20, .	2.3	4
44	Fungal biotin homeostasis is essential for immune evasion after macrophage phagocytosis and virulence. Cellular Microbiology, 2020, 22, e13197.	2.1	18
45	RNAi as a Tool to Study Virulence in the Pathogenic Yeast Candida glabrata. Frontiers in Microbiology, 2019, 10, 1679.	3.5	6
46	Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. Journal of Infectious Diseases, 2019, 220, 1477-1488.	4.0	72
47	A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials, 2019, 220, 119396.	11.4	107
48	Candidalysin: discovery and function in Candida albicans infections. Current Opinion in Microbiology, 2019, 52, 100-109.	5.1	134
49	Keeping <i>Candida</i> commensal – How lactobacilli antagonize pathogenicity of <i>Candida albicans</i> in an <i>in vitro</i> gut model. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	51
50	Host–Pathogen Interactions during Female Genital Tract Infections. Trends in Microbiology, 2019, 27, 982-996.	7.7	41
51	Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nature Communications, 2019, 10, 2297.	12.8	104
52	Disruption of Membrane Integrity by the Bacterium-Derived Antifungal Jagaricin. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
53	CARD9+ microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nature Immunology, 2019, 20, 559-570.	14.5	162
54	Integrity under stress: Host membrane remodelling and damage by fungal pathogens. Cellular Microbiology, 2019, 21, e13016.	2.1	28

#	Article	IF	CITATIONS
55	Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell, 2019, 176, 1340-1355.e15.	28.9	321
56	Antivirulence and avirulence genes in human pathogenic fungi. Virulence, 2019, 10, 935-947.	4.4	19
57	Processing of <i>Candida albicans</i> Ece1p Is Critical for Candidalysin Maturation and Fungal Virulence. MBio, 2018, 9, .	4.1	72
58	Metals in fungal virulence. FEMS Microbiology Reviews, 2018, 42, .	8.6	172
59	Metabolic adaptation of intracellular bacteria and fungi to macrophages. International Journal of Medical Microbiology, 2018, 308, 215-227.	3.6	25
60	Candidalysin Drives Epithelial Signaling, Neutrophil Recruitment, and Immunopathology at the Vaginal Mucosa. Infection and Immunity, 2018, 86, .	2.2	123
61	The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nature Communications, 2018, 9, 4260.	12.8	181
62	Candida albicans Hyphal Expansion Causes Phagosomal Membrane Damage and Luminal Alkalinization. MBio, 2018, 9, .	4.1	82
63	Biphasic zinc compartmentalisation in a human fungal pathogen. PLoS Pathogens, 2018, 14, e1007013.	4.7	67
64	The needle and the damage done. Nature Microbiology, 2018, 3, 860-861.	13.3	0
65	Intestinal epithelial cells and TÂcells differentially recognize and respond to <i>Candida albicans</i> yeast and hypha. European Journal of Immunology, 2018, 48, 1826-1837.	2.9	6
66	Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers. MBio, 2018, 9, .	4.1	131
67	IL-36 and IL-1/IL-17 Drive Immunity to Oral Candidiasis via Parallel Mechanisms. Journal of Immunology, 2018, 201, 627-634.	0.8	69
68	<i>Candida albicans</i> morphology: still in focus. Expert Review of Anti-Infective Therapy, 2017, 15, 327-330.	4.4	34
69	Fungi that Infect Humans. Microbiology Spectrum, 2017, 5, .	3.0	149
70	The Snf1â€activating kinase Sak1 is a key regulator of metabolic adaptation and <i>in vivo</i> fitness of <i>Candida albicans</i> . Molecular Microbiology, 2017, 104, 989-1007.	2.5	37
71	Candida albicans–epithelial interactions and induction of mucosal innate immunity. Current Opinion in Microbiology, 2017, 40, 104-112.	5.1	104
72	Oral epithelial cells orchestrate innate type 17 responses to <i>Candida albicans</i> through the virulence factor candidalysin. Science Immunology, 2017, 2, .	11.9	154

#	Article	IF	CITATIONS
73	A functional link between hyphal maintenance and quorum sensing in <i>Candida albicans</i> . Molecular Microbiology, 2017, 103, 595-617.	2.5	35
74	Fungi that Infect Humans. , 2017, , 811-843.		8
75	The Fungal Pathogen Candida glabrata Does Not Depend on Surface Ferric Reductases for Iron Acquisition. Frontiers in Microbiology, 2017, 8, 1055.	3.5	27
76	Zinc Limitation Induces a Hyper-Adherent Goliath Phenotype in Candida albicans. Frontiers in Microbiology, 2017, 8, 2238.	3.5	42
77	Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion. PLoS ONE, 2017, 12, e0184438.	2.5	38
78	Candida species Rewired Hyphae Developmental Programs for Chlamydospore Formation. Frontiers in Microbiology, 2016, 7, 1697.	3.5	36
79	Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of <i>Candida albicans</i> Revealing the Importance of Glycosylation for Antigen Recognition. Journal of Proteome Research, 2016, 15, 2394-2406.	3.7	14
80	Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 2016, 532, 64-68.	27.8	628
81	Pleiotropic effects of the vacuolar ABC transporter MLT1 of Candida albicans on cell function and virulence. Biochemical Journal, 2016, 473, 1537-1552.	3.7	28
82	<i>In vivo</i> induction of neutrophil chemotaxis by secretory aspartyl proteinases of <i>Candida albicans</i> . Virulence, 2016, 7, 819-825.	4.4	50
83	Enemies and brothers in arms: <i>Candida albicans</i> and gram-positive bacteria. Cellular Microbiology, 2016, 18, 1709-1715.	2.1	51
84	Global Identification of Biofilm-Specific Proteolysis in Candida albicans. MBio, 2016, 7, .	4.1	63
85	Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions. Scientific Reports, 2016, 6, 36055.	3.3	33
86	A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts. MBio, 2016, 7, .	4.1	45
87	Virulence factors in fungal pathogens of man. Current Opinion in Microbiology, 2016, 32, 89-95.	5.1	64
88	Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. Journal of Microbiology, 2016, 54, 149-169.	2.8	186
89	Effects of the glucocorticoid betamethasone on the interaction of Candida albicans with human epithelial cells. Microbiology (United Kingdom), 2016, 162, 2116-2125.	1.8	15
90	In Vivo Transcriptional Profiling of Human Pathogenic Fungi during Infection: Reflecting the Real Life?. PLoS Pathogens, 2016, 12, e1005471.	4.7	11

#	Article	IF	CITATIONS
91	The Missing Link between Candida albicans Hyphal Morphogenesis and Host Cell Damage. PLoS Pathogens, 2016, 12, e1005867.	4.7	79
92	Aspartyl Proteinases of Eukaryotic Microbial Pathogens: From Eating to Heating. PLoS Pathogens, 2016, 12, e1005992.	4.7	27
93	Comparative Genomic Analysis Reveals a Critical Role of De Novo Nucleotide Biosynthesis for Saccharomyces cerevisiae Virulence. PLoS ONE, 2015, 10, e0122382.	2.5	9
94	Antifungal activity of clotrimazole against Candida albicans depends on carbon sources, growth phase and morphology. Journal of Medical Microbiology, 2015, 64, 714-723.	1.8	23
95	Secretory Aspartyl Proteinases Cause Vaginitis and Can Mediate Vaginitis Caused by Candida albicans in Mice. MBio, 2015, 6, e00724.	4.1	68
96	Of mice, flies – and men? Comparing fungal infection models for large-scale screening efforts. DMM Disease Models and Mechanisms, 2015, 8, 473-486.	2.4	52
97	Induction of Caspase-11 by Aspartyl Proteinases of Candida albicans and Implication in Promoting Inflammatory Response. Infection and Immunity, 2015, 83, 1940-1948.	2.2	46
98	Intracellular survival of <i>Candida glabrata</i> in macrophages: immune evasion and persistence. FEMS Yeast Research, 2015, 15, fov042.	2.3	92
99	Candida Survival Strategies. Advances in Applied Microbiology, 2015, 91, 139-235.	2.4	126
100	Csr1/Zap1 Maintains Zinc Homeostasis and Influences Virulence in Candida dubliniensis but Is Not Coupled to Morphogenesis. Eukaryotic Cell, 2015, 14, 661-670.	3.4	34
101	Regulatory Networks Controlling Nitrogen Sensing and Uptake in Candida albicans. PLoS ONE, 2014, 9, e92734.	2.5	59
102	Identification of Candida glabrata Genes Involved in pH Modulation and Modification of the Phagosomal Environment in Macrophages. PLoS ONE, 2014, 9, e96015.	2.5	54
103	Pathogenicity mechanisms and host response during oral <i>Candida albicans</i> infections. Expert Review of Anti-Infective Therapy, 2014, 12, 867-879.	4.4	86
104	A family of glutathione peroxidases contributes to oxidative stress resistance in Candida albicans. Medical Mycology, 2014, 52, 223-239.	0.7	30
105	Histidine Degradation via an Aminotransferase Increases the Nutritional Flexibility of Candida glabrata. Eukaryotic Cell, 2014, 13, 758-765.	3.4	26
106	One Small Step for a Yeast - Microevolution within Macrophages Renders Candida glabrata Hypervirulent Due to a Single Point Mutation. PLoS Pathogens, 2014, 10, e1004478.	4.7	49
107	Microevolution of Candida albicans in Macrophages Restores Filamentation in a Nonfilamentous Mutant. PLoS Genetics, 2014, 10, e1004824.	3.5	67
108	Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes. PLoS Pathogens, 2014, 10, e1004211.	4.7	155

#	Article	IF	CITATIONS
109	Adaptive Prediction As a Strategy in Microbial Infections. PLoS Pathogens, 2014, 10, e1004356.	4.7	48
110	Metabolism in Fungal Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019695-a019695.	6.2	98
111	Epithelial invasion outcompetes hypha development during <i>Candida albicans</i> infection as revealed by an imageâ€based systems biology approach. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 126-139.	1.5	69
112	Human Natural Killer Cells Acting as Phagocytes Against Candida albicans and Mounting an Inflammatory Response That Modulates Neutrophil Antifungal Activity. Journal of Infectious Diseases, 2014, 209, 616-626.	4.0	84
113	Immune Evasion, Stress Resistance, and Efficient Nutrient Acquisition Are Crucial for Intracellular Survival of Candida glabrata within Macrophages. Eukaryotic Cell, 2014, 13, 170-183.	3.4	100
114	Fine-Scale Chromosomal Changes in Fungal Fitness. Current Fungal Infection Reports, 2014, 8, 171-178.	2.6	1
115	In vivo imaging of disseminated murine Candida albicans infection reveals unexpected host sites of fungal persistence during antifungal therapy. Journal of Antimicrobial Chemotherapy, 2014, 69, 2785-2796.	3.0	63
116	Distinct Roles of Candida albicans-Specific Genes in Host-Pathogen Interactions. Eukaryotic Cell, 2014, 13, 977-989.	3.4	11
117	Secreted aspartic proteases of <i><scp>C</scp>andida albicans</i> activate the <scp>NLRP</scp> 3 inflammasome. European Journal of Immunology, 2013, 43, 679-692.	2.9	94
118	Thriving within the host: Candida spp. interactions with phagocytic cells. Medical Microbiology and Immunology, 2013, 202, 183-195.	4.8	93
119	Clotrimazole Dampens Vaginal Inflammation and Neutrophil Infiltration in Response to Candida albicans Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 5178-5180.	3.2	11
120	A Peptide Derived from the Highly Conserved Protein GAPDH Is Involved in Tissue Protection by Different Antifungal Strategies and Epithelial Immunomodulation. Journal of Investigative Dermatology, 2013, 133, 144-153.	0.7	41
121	<i>Candida albicans</i> pathogenicity mechanisms. Virulence, 2013, 4, 119-128.	4.4	1,438
122	A Core Filamentation Response Network in Candida albicans Is Restricted to Eight Genes. PLoS ONE, 2013, 8, e58613.	2.5	90
123	Hsp21 Potentiates Antifungal Drug Tolerance in Candida albicans. PLoS ONE, 2013, 8, e60417.	2.5	17
124	Two unlike cousins: <i> <scp>C</scp> andida albicans </i> and <i> <scp>C</scp> . glabrata </i> infection strategies. Cellular Microbiology, 2013, 15, 701-708.	2.1	205
125	Global Transcriptome Sequencing Identifies Chlamydospore Specific Markers in Candida albicans and Candida dubliniensis. PLoS ONE, 2013, 8, e61940.	2.5	23
126	Candida albicans Scavenges Host Zinc via Pra1 during Endothelial Invasion. PLoS Pathogens, 2012, 8, e1002777.	4.7	197

#	Article	IF	CITATIONS
127	The Novel Candida albicans Transporter Dur31 Is a Multi-Stage Pathogenicity Factor. PLoS Pathogens, 2012, 8, e1002592.	4.7	47
128	Transcriptomics in human blood incubation reveals the importance of oxidative stress response in Saccharomyces cerevisiae clinical strains. BMC Genomics, 2012, 13, 419.	2.8	15
129	Importance of the Candida albicans cell wall during commensalism and infection. Current Opinion in Microbiology, 2012, 15, 406-412.	5.1	281
130	Zinc Exploitation by Pathogenic Fungi. PLoS Pathogens, 2012, 8, e1003034.	4.7	60
131	<i>Candida albicans</i> dimorphism as a therapeutic target. Expert Review of Anti-Infective Therapy, 2012, 10, 85-93.	4.4	292
132	Persistence versus Escape: Aspergillus terreus and Aspergillus fumigatus Employ Different Strategies during Interactions with Macrophages. PLoS ONE, 2012, 7, e31223.	2.5	74
133	Small but Crucial: The Novel Small Heat Shock Protein Hsp21 Mediates Stress Adaptation and Virulence in Candida albicans. PLoS ONE, 2012, 7, e38584.	2.5	78
134	Secreted Aspartic Protease Cleavage of Candida albicans Msb2 Activates Cek1 MAPK Signaling Affecting Biofilm Formation and Oropharyngeal Candidiasis. PLoS ONE, 2012, 7, e46020.	2.5	75
135	An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells. Frontiers in Microbiology, 2012, 3, 85.	3.5	123
136	Isolation and Amplification of Fungal RNA for Microarray Analysis from Host Samples. Methods in Molecular Biology, 2012, 845, 411-421.	0.9	8
137	Complement plays a central role in <i><scp>C</scp>andida albicans</i> â€induced cytokine production by human <scp>PBMC</scp> s. European Journal of Immunology, 2012, 42, 993-1004.	2.9	57
138	Candida albicans-Epithelial Interactions: Dissecting the Roles of Active Penetration, Induced Endocytosis and Host Factors on the Infection Process. PLoS ONE, 2012, 7, e36952.	2.5	175
139	Cellular Responses of Candida albicans to Phagocytosis and the Extracellular Activities of Neutrophils Are Critical to Counteract Carbohydrate Starvation, Oxidative and Nitrosative Stress. PLoS ONE, 2012, 7, e52850.	2.5	99
140	The Facultative Intracellular Pathogen <i>Candida glabrata</i> Subverts Macrophage Cytokine Production and Phagolysosome Maturation. Journal of Immunology, 2011, 187, 3072-3086.	0.8	196
141	Host–pathogen interactions and virulence-associated genes during Candida albicans oral infections. International Journal of Medical Microbiology, 2011, 301, 417-422.	3.6	70
142	Candida albicans interactions with epithelial cells and mucosal immunity. Microbes and Infection, 2011, 13, 963-976.	1.9	218
143	The Candida albicans-Specific Gene EED1 Encodes a Key Regulator of Hyphal Extension. PLoS ONE, 2011, 6, e18394.	2.5	72
144	Role of pH-regulated antigen 1 of Candida albicans in the fungal recognition and antifungal response of human neutrophils. Molecular Immunology, 2011, 48, 2135-2143.	2.2	25

BERNHARD HUBE

#	Article	IF	CITATIONS
145	Candida albicans Adhesion to and Invasion and Damage of Vaginal Epithelial Cells: Stage-Specific Inhibition by Clotrimazole and Bifonazole. Antimicrobial Agents and Chemotherapy, 2011, 55, 4436-4439.	3.2	46
146	Proteolytic Cleavage of Covalently Linked Cell Wall Proteins by Candida albicans Sap9 and Sap10. Eukaryotic Cell, 2011, 10, 98-109.	3.4	84
147	The pH-regulated Antigen 1 of Candida albicans Binds the Human Complement Inhibitor C4b-binding Protein and Mediates Fungal Complement Evasion. Journal of Biological Chemistry, 2011, 286, 8021-8029.	3.4	60
148	From Attachment to Damage: Defined Genes of Candida albicans Mediate Adhesion, Invasion and Damage during Interaction with Oral Epithelial Cells. PLoS ONE, 2011, 6, e17046.	2.5	219
149	Pathogenesis of Candida albicans Infections in the Alternative Chorio-Allantoic Membrane Chicken Embryo Model Resembles Systemic Murine Infections. PLoS ONE, 2011, 6, e19741.	2.5	46
150	Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Systems Biology, 2010, 4, 148.	3.0	31
151	<i>Candida glabrata</i> tryptophanâ€based pigment production via the Ehrlich pathway. Molecular Microbiology, 2010, 76, 25-47.	2.5	29
152	Cellular interactions of <i>Candida albicans</i> with human oral epithelial cells and enterocytes. Cellular Microbiology, 2010, 12, 248-271.	2.1	280
153	Embryonated Eggs as an Alternative Infection Model To Investigate <i>Aspergillus fumigatus</i> Virulence. Infection and Immunity, 2010, 78, 2995-3006.	2.2	63
154	Candida albicans Releases Soluble Factors That Potentiate Cytokine Production by Human Cells through a Protease-Activated Receptor 1- and 2-Independent Pathway. Infection and Immunity, 2010, 78, 393-399.	2.2	19
155	Hgc1 Mediates Dynamic Candida albicans-Endothelium Adhesion Events during Circulation. Eukaryotic Cell, 2010, 9, 278-287.	3.4	37
156	The Inflammatory Response Induced by Aspartic Proteases of <i>Candida albicans</i> Is Independent of Proteolytic Activity. Infection and Immunity, 2010, 78, 4754-4762.	2.2	54
157	Secreted Candida Proteins: Pathogenicity and Host Immunity. , 2010, , 97-120.		1
158	Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Current Opinion in Microbiology, 2010, 13, 392-400.	5.1	145
159	A Novel Immune Evasion Strategy of Candida albicans: Proteolytic Cleavage of a Salivary Antimicrobial Peptide. PLoS ONE, 2009, 4, e5039.	2.5	115
160	The Glycosylphosphatidylinositol-Anchored Protease Sap9 Modulates the Interaction of <i>Candida albicans</i> with Human Neutrophils. Infection and Immunity, 2009, 77, 5216-5224.	2.2	43
161	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	27.8	963
162	Identifying infection-associated genes of <i>Candida albicans</i> in the postgenomic era. FEMS Yeast Research, 2009, 9, 688-700.	2.3	115

#	Article	IF	CITATIONS
163	<i>Candida albicans</i> â€firon acquisition within the host. FEMS Yeast Research, 2009, 9, 1000-1012.	2.3	168
164	Fungal adaptation to the host environment. Current Opinion in Microbiology, 2009, 12, 347-349.	5.1	45
165	The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Molecular Immunology, 2009, 47, 465-475.	2.2	130
166	Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiology, 2008, 8, 116.	3.3	66
167	Induction of ERK-kinase signalling triggers morphotype-specific killing of Candida albicans filaments by human neutrophils. Cellular Microbiology, 2008, 10, 807-820.	2.1	69
168	Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans. BMC Microbiology, 2008, 8, 187.	3.3	39
169	The Hyphal-Associated Adhesin and Invasin Als3 of Candida albicans Mediates Iron Acquisition from Host Ferritin. PLoS Pathogens, 2008, 4, e1000217.	4.7	259
170	From Attachment to Invasion: Infection Associated Genes of Candida albicans. Medical Mycology Journal, 2008, 49, 245-251.	0.7	8
171	Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology (United Kingdom), 2008, 154, 3266-3280.	1.8	218
172	The Early Transcriptional Response of Human Granulocytes to Infection with Candida albicans Is Not Essential for Killing but Reflects Cellular Communications. Infection and Immunity, 2007, 75, 1493-1501.	2.2	33
173	The Role of Secreted Aspartyl Proteinases in <i>Candida albicans</i> Keratitis. , 2007, 48, 3559.		52
174	Haemoperfused liver as an ex vivo model for organ invasion of Candida albicans. Journal of Medical Microbiology, 2007, 56, 266-270.	1.8	13
175	PGA4, a GAS homologue from Candida albicans, is up-regulated early in infection processes. Fungal Genetics and Biology, 2007, 44, 368-377.	2.1	20
176	In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cellular Microbiology, 2007, 9, 2938-2954.	2.1	255
177	In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Molecular Microbiology, 2007, 63, 1606-1628.	2.5	134
178	Multiple functions of DOA1 in Candida albicans. Microbiology (United Kingdom), 2007, 153, 1026-1041.	1.8	15
179	Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. Journal of Clinical Investigation, 2007, 117, 3664-72.	8.2	186
180	Comparison of susceptibility and transcription profile of the new antifungal hassallidin A with caspofungin. Biochemical and Biophysical Research Communications, 2006, 349, 740-749.	2.1	12

#	Article	IF	CITATIONS
181	Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nature Protocols, 2006, 1, 2767-2773.	12.0	94
182	Infection-associated genes of Candida albicans. Future Microbiology, 2006, 1, 209-218.	2.0	28
183	Glycosylphosphatidylinositol-anchored Proteases of Candida albicans Target Proteins Necessary for Both Cellular Processes and Host-Pathogen Interactions. Journal of Biological Chemistry, 2006, 281, 688-694.	3.4	222
184	Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses, 2005, 48, 365-377.	4.0	419
185	Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Molecular Microbiology, 2005, 56, 397-415.	2.5	414
186	Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology (United Kingdom), 2005, 151, 3381-3394.	1.8	39
187	Candida albicans -Secreted Aspartic Proteinases Modify the Epithelial Cytokine Response in an In Vitro Model of Vaginal Candidiasis. Infection and Immunity, 2005, 73, 2758-2765.	2.2	84
188	Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes. Journal of Antimicrobial Chemotherapy, 2005, 55, 645-654.	3.0	97
189	Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. Journal of Antimicrobial Chemotherapy, 2005, 55, 663-673.	3.0	49
190	Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis. Microbiology (United Kingdom), 2004, 150, 2807-2813.	1.8	104
191	Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology (United Kingdom), 2004, 150, 3363-3382.	1.8	96
192	Candida albicans proteinases and host/pathogen interactions. Cellular Microbiology, 2004, 6, 915-926.	2.1	288
193	Expression analysis of the lipase gene family during experimental infections and in patient samples. FEMS Yeast Research, 2004, 4, 401-408.	2.3	89
194	From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Current Opinion in Microbiology, 2004, 7, 336-341.	5.1	196
195	Stage-specific gene expression of Candida albicans in human blood. Molecular Microbiology, 2003, 47, 1523-1543.	2.5	216
196	Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis. Microbiology and Molecular Biology Reviews, 2003, 67, 400-428.	6.6	936
197	Ciclopirox Olamine Treatment Affects the Expression Pattern of <i>Candida albicans</i> Genes Encoding Virulence Factors, Iron Metabolism Proteins, and Drug Resistance Factors. Antimicrobial Agents and Chemotherapy, 2003, 47, 1805-1817.	3.2	122
198	The Secreted Aspartyl Proteinases Sap1 and Sap2 Cause Tissue Damage in an In Vitro Model of Vaginal Candidiasis Based on Reconstituted Human Vaginal Epithelium. Infection and Immunity, 2003, 71, 3227-3234.	2.2	168

#	Article	IF	CITATIONS
199	Effect of antimycotic agents on the activity of aspartyl proteinases secreted by Candida albicans. Journal of Medical Microbiology, 2003, 52, 247-249.	1.8	27
200	Reduced expression of the hyphal-independent Candida albicans proteinase genes SAP1 and SAP3 in the efg1 mutant is associated with attenuated virulence during infection of oral epithelium. Journal of Medical Microbiology, 2003, 52, 623-632.	1.8	74
201	Tissue Infection and Site-specific Gene Expression in Candida albicans. Advances in Applied Microbiology, 2003, 53, 271-290.	2.4	20
202	Candida albicans Hyphal Formation and the Expression of the Efg1-Regulated Proteinases Sap4 to Sap6 Are Required for the Invasion of Parenchymal Organs. Infection and Immunity, 2002, 70, 3689-3700.	2.2	235
203	Anti-fungal therapy at the HAART of viral therapy. Trends in Microbiology, 2002, 10, 173-177.	7.7	54
204	Infection of Human Oral Epithelia with Candida Species Induces Cytokine Expression Correlated to the Degree of Virulence. Journal of Investigative Dermatology, 2002, 118, 652-657.	0.7	126
205	The KEX2 gene of Candida glabrata is required for cell surface integrity. Molecular Microbiology, 2001, 41, 1431-1444.	2.5	45
206	The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans. Microbiology (United Kingdom), 2001, 147, 879-889.	1.8	65
207	Candida albicans proteinases: resolving the mystery of a gene family. Microbiology (United Kingdom), 2001, 147, 1997-2005.	1.8	206
208	Invasion of Candida albicans Correlates with Expression of Secreted Aspartic Proteinases during Experimental Infection of Human Epidermis. Journal of Investigative Dermatology, 2000, 114, 712-717.	0.7	95
209	Secreted lipases of Candida albicans : cloning, characterisation and expression analysis of a new gene family with at least ten members. Archives of Microbiology, 2000, 174, 362-374.	2.2	185
210	Effects of the Human Immunodeficiency Virus (HIV) Proteinase Inhibitors Saquinavir and Indinavir on In Vitro Activities of Secreted Aspartyl Proteinases of Candida albicans Isolates from HIV-Infected Patients. Antimicrobial Agents and Chemotherapy, 1999, 43, 2038-2042.	3.2	130
211	Evidence that Members of the Secretory Aspartyl Proteinase Gene Family, in Particular <i>SAP2,</i> Are Virulence Factors for <i>Candida</i> Vaginitis. Journal of Infectious Diseases, 1999, 179, 201-208.	4.0	164
212	Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Molecular Microbiology, 1999, 34, 169-180.	2.5	209
213	In Vivo Expression and Localization of Candida albicans Secreted Aspartyl Proteinases during Oral Candidiasis in HIV-Infected Patients. Journal of Investigative Dermatology, 1999, 112, 383-386.	0.7	53
214	Germ Tubes and Proteinase Activity Contribute to Virulence of <i>Candida albicans</i> in Murine Peritonitis. Infection and Immunity, 1999, 67, 6637-6642.	2.2	93
215	Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Molecular Microbiology, 1998, 29, 605-615.	2.5	199
216	Functional Aspects of Secreted Candida Proteinases. Advances in Experimental Medicine and Biology, 1998, 436, 339-344.	1.6	21

#	Article	IF	CITATIONS
217	Differential regulation of SAP8 and SAPS, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology (United Kingdom), 1998, 144, 2731-2737.	1.8	129
218	Secreted Aspartyl Proteinases and Interactions of <i>Candida albicans</i> with Human Endothelial Cells. Infection and Immunity, 1998, 66, 3003-3005.	2.2	56
219	Multiplicity of genes encoding secreted aspartic proteinases inCandidaspecies. Molecular Microbiology, 1994, 13, 357-368.	2.5	241
220	Gene Expression during the Distinct Stages of Candidiasis. , 0, , 283-298.		1

14