Nolwenn Jouvenet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/528055/publications.pdf

Version: 2024-02-01

51 papers

4,381 citations

28 h-index 189892 50 g-index

64 all docs

64 docs citations

64 times ranked 7207 citing authors

#	Article	IF	Citations
1	Discovery of Genes that Modulate Flavivirus Replication in an Interferon-Dependent Manner. Journal of Molecular Biology, 2022, 434, 167277.	4.2	6
2	Editorial: Balanced and Unbalanced Immune Response to Dengue Virus in Disease Protection and Pathogenesis. Frontiers in Immunology, 2022, 13, 835731.	4.8	0
3	A virusâ€derived microRNA targets immune response genes during SARSâ€CoVâ€2 infection. EMBO Reports, 2022, 23, e54341.	4.5	30
4	Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen. Nature Communications, 2022, 13, 2442.	12.8	25
5	Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. Journal of Virology, 2022, 96, .	3.4	10
6	The Inflammasome Components NLRP3 and ASC Act in Concert with IRGM To Rearrange the Golgi Apparatus during Hepatitis C Virus Infection. Journal of Virology, 2021, 95, .	3.4	19
7	Genomic diversity contributes to the neuroinvasiveness of the Yellow fever French neurotropic vaccine. Npj Vaccines, 2021, 6, 64.	6.0	2
8	ddPCR increases detection of SARS-CoV-2 RNA in patients with low viral loads. Archives of Virology, 2021, 166, 2529-2540.	2.1	10
9	Zika Virus Requires the Expression of Claudin-7 for Optimal Replication in Human Endothelial Cells. Frontiers in Microbiology, 2021, 12, 746589.	3.5	6
10	Clash of the titans: interferons and SARS-CoV-2. Trends in Immunology, 2021, 42, 1069-1072.	6.8	10
11	Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 2020, 370, .	12.6	508
12	Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathogens, 2020, 16, e1008737.	4.7	406
13	Retinoic Acid Inducible Gene I and Protein Kinase R, but Not Stress Granules, Mediate the Proinflammatory Response to Yellow Fever Virus. Journal of Virology, 2020, 94, .	3.4	15
14	Midgut barriers prevent the replication and dissemination of the yellow fever vaccine in Aedes aegypti. PLoS Neglected Tropical Diseases, 2019, 13, e0007299.	3.0	22
15	Zika virus enhances monocyte adhesion and transmigration favoring viral dissemination to neural cells. Nature Communications, 2019, 10, 4430.	12.8	83
16	LGP2 binds to PACT to regulate RIG-l– and MDA5-mediated antiviral responses. Science Signaling, 2019, 12, .	3.6	51
17	Atlastin Endoplasmic Reticulum-Shaping Proteins Facilitate Zika Virus Replication. Journal of Virology, 2019, 93, .	3.4	33
18	Uncovering Flavivirus Host Dependency Factors through a Genome-Wide Gain-of-Function Screen. Viruses, 2019, 11, 68.	3.3	21

#	Article	IF	CITATIONS
19	The Polyphenol-Rich Extract from Psiloxylon mauritianum, an Endemic Medicinal Plant from Reunion Island, Inhibits the Early Stages of Dengue and Zika Virus Infection. International Journal of Molecular Sciences, 2019, 20, 1860.	4.1	36
20	Stimulation of Innate Immunity by Host and Viral RNAs. Trends in Immunology, 2019, 40, 1134-1148.	6.8	80
21	The Amino-Terminal Region of Hepatitis E Virus ORF1 Containing a Methyltransferase (Met) and a Papain-Like Cysteine Protease (PCP) Domain Counteracts Type I Interferon Response. Viruses, 2018, 10, 726.	3.3	14
22	Characterization of the Anti-Hepatitis C Virus Activity of New Nonpeptidic Small-Molecule Cyclophilin Inhibitors with the Potential for Broad Anti-Flaviviridae Activity. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	12
23	TIM-1ÂUbiquitination Mediates Dengue Virus Entry. Cell Reports, 2018, 23, 1779-1793.	6.4	75
24	RIG-I Recognizes the 5′ Region of Dengue and Zika Virus Genomes. Cell Reports, 2018, 24, 320-328.	6.4	94
25	Immature particles and capsid-free viral RNA produced by Yellow fever virus-infected cells stimulate plasmacytoid dendritic cells to secrete interferons. Scientific Reports, 2018, 8, 10889.	3.3	34
26	<i>>DI-tector</i> : defective interfering viral genomes' detector for next-generation sequencing data. Rna, 2018, 24, 1285-1296.	3. 5	33
27	Extract from Aphloia theiformis, an edible indigenous plant from Reunion Island, impairs Zika virus attachment to the host cell surface. Scientific Reports, 2018, 8, 10856.	3.3	31
28	Oncolytic measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by human myeloid and plasmacytoid dendritic cells. Oncolmmunology, 2017, 6, e1261240.	4.6	25
29	Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses. Cell Reports, 2017, 18, 324-333.	6.4	361
30	Zika virus induces massive cytoplasmic vacuolization and paraptosisâ€like death in infected cells. EMBO Journal, 2017, 36, 1653-1668.	7.8	118
31	Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses. MBio, 2016, 7, e01956-15.	4.1	50
32	Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons. Science Signaling, 2015, 8, ra25.	3.6	50
33	Dynamics of ESCRT proteins. Cellular and Molecular Life Sciences, 2012, 69, 4121-4133.	5 . 4	32
34	Inhibition of HIV-1 Particle Assembly by 2′,3′-Cyclic-Nucleotide 3′-Phosphodiesterase. Cell Host and Microbe, 2012, 12, 585-597.	11.0	54
35	Visualizing HIV-1 Assembly. Journal of Molecular Biology, 2011, 410, 501-511.	4.2	73
36	Dynamics of ESCRT protein recruitment during retroviral assembly. Nature Cell Biology, 2011, 13, 394-401.	10.3	198

#	Article	IF	CITATIONS
37	Cell biology of retroviral RNA packaging. RNA Biology, 2011, 8, 572-580.	3.1	49
38	Viral Houseguests Undertake Interior Redesign. Cell, 2010, 141, 754-756.	28.9	2
39	Broad-Spectrum Inhibition of Retroviral and Filoviral Particle Release by Tetherin. Journal of Virology, 2009, 83, 1837-1844.	3.4	347
40	Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19114-19119.	7.1	233
41	Visualizing The Biogenesis Of Individual Hiv-1 Virions In Live Cells. Biophysical Journal, 2009, 96, 420a.	0.5	0
42	Imaging the biogenesis of individual HIV-1 virions in live cells. Nature, 2008, 454, 236-240.	27.8	290
43	First report of <i>Litomosa </i> spp. (Nematoda: Filarioidea) from malagasy bats; review of the genus and relationships between species. Parasite, 2006, 13, 3-10.	2.0	8
44	African swine fever virus induces filopodia-like projections at the plasma membrane. Cellular Microbiology, 2006, 8, 1803-1811.	2.1	57
45	Plasma Membrane Is the Site of Productive HIV-1 Particle Assembly. PLoS Biology, 2006, 4, e435.	5.6	299
46	HIV-1 Vpu Promotes Release and Prevents Endocytosis of Nascent Retrovirus Particles from the Plasma Membrane. PLoS Pathogens, 2006, 2, e39.	4.7	239
47	The Betaretrovirus Mason-Pfizer Monkey Virus Selectively Excludes Simian APOBEC3G from Virion Particles. Journal of Virology, 2006, 80, 12102-12108.	3.4	30
48	African swine fever virus infection disrupts centrosome assembly and function. Journal of General Virology, 2005, 86, 589-594.	2.9	28
49	Transport of African Swine Fever Virus from Assembly Sites to the Plasma Membrane Is Dependent on Microtubules and Conventional Kinesin. Journal of Virology, 2004, 78, 7990-8001.	3.4	93
50	Linkage mapping of Hsa-1Og, a resistance gene of African rice to the cyst nematode, Heterodera sacchari. Theoretical and Applied Genetics, 2003, 107, 691-696.	3.6	36
51	Examination of type material of two species of <i>Litomosoides </i> (Filarioidea : Onchocercidae), parasites from bats; taxonomic consequences. Parasite, 2003, 10, 211-218.	2.0	17