Neil B Mckeown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5280318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of performance and stability of thin-film nanocomposite membranes for organic solvent nanofiltration using hypercrosslinked polymer additives. Journal of Membrane Science, 2022, 644, 120172.	8.2	11
2	The structure-property relationships of Polymers of Intrinsic Microporosity (PIMs). Current Opinion in Chemical Engineering, 2022, 36, 100785.	7.8	15
3	Advanced methods for analysis of mixed gas diffusion in polymeric membranes. Journal of Membrane Science, 2022, 648, 120356.	8.2	10
4	Effects of g-C ₃ N ₄ Heterogenization into Intrinsically Microporous Polymers on the Photocatalytic Generation of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2022, 14, 19938-19948.	8.0	17
5	Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nature Communications, 2022, 13, .	12.8	58
6	Upgrading of raw biogas using membranes based on the ultrapermeable polymer of intrinsic microporosity PIM-TMN-Trip. Journal of Membrane Science, 2021, 618, 118694.	8.2	23
7	Optimization of the fabrication of amidoxime modified PIM-1 electrospun fibres for use as breathable and reactive materials. Polymer, 2021, 213, 123205.	3.8	15
8	Control Over the Morphology of Electrospun Microfibrous Mats of a Polymer of Intrinsic Microporosity. Membranes, 2021, 11, 422.	3.0	7
9	Ionic Diode and Molecular Pump Phenomena Associated with Caffeic Acid Accumulated into an Intrinsically Microporous Polyamine (PIMâ€EAâ€TB). ChemElectroChem, 2021, 8, 2044-2051.	3.4	7
10	Imputation of missing gas permeability data for polymer membranes using machine learning. Journal of Membrane Science, 2021, 627, 119207.	8.2	37
11	Ultrapermeable Polymers of Intrinsic Microporosity Containing Spirocyclic Units with Fused Triptycenes. Advanced Functional Materials, 2021, 31, 2104474.	14.9	29
12	Size‧elective Photoelectrochemical Reactions in Microporous Environments: Clark Probe Investigation of Pt@gâ€C ₃ N ₄ Embedded into Intrinsically Microporous Polymer (PIMâ€1). ChemElectroChem, 2021, 8, 3499-3505.	3.4	6
13	Non-enzymatic electrochemical cholesterol sensor based on strong host-guest interactions with a polymer of intrinsic microporosity (PIM) with DFT study. Analytical and Bioanalytical Chemistry, 2021, 413, 6523-6533.	3.7	7
14	Effective electroosmotic transport of water in an intrinsically microporous polyamine (PIM-EA-TB). Electrochemistry Communications, 2021, 130, 107110.	4.7	5
15	Shuttle-effect-free sodium–sulfur batteries derived from a Tröger's base polymer of intrinsic microporosity. Journal of Power Sources, 2021, 513, 230539.	7.8	6
16	Catechin or quercetin guests in an intrinsically microporous polyamine (PIM-EA-TB) host: accumulation, reactivity, and release. RSC Advances, 2021, 11, 27432-27442.	3.6	4
17	Synthesis and gas permeation properties of tetraoxidethianthrene-based polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2021, 9, 2840-2849.	10.3	17
18	Polymers of Intrinsic Microporosity in the Design of Electrochemical Multicomponent and Multiphase Interfaces. Analytical Chemistry, 2021, 93, 1213-1220.	6.5	19

#	Article	IF	CITATIONS
19	Hydrogen Peroxide Versus Hydrogen Generation at Bipolar Pd/Au Nano-catalysts Grown into an Intrinsically Microporous Polyamine (PIM-EA-TB). Electrocatalysis, 2021, 12, 771-784.	3.0	3
20	Low Frequency Vibrations and Diffusion in Disordered Polymers Bearing an Intrinsic Microporosity as Revealed by Neutron Scattering. Crystals, 2021, 11, 1482.	2.2	2
21	Intrinsically Microporous Polymer Nanosheets for Highâ€Performance Gas Separation Membranes. Macromolecular Rapid Communications, 2020, 41, e1900572.	3.9	23
22	Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nature Materials, 2020, 19, 195-202.	27.5	237
23	Correlating Gas Permeability and Young's Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy. Industrial & Engineering Chemistry Research, 2020, 59, 5381-5391.	3.7	25
24	Tailoring molecular interactions between microporous polymers in high performance mixed matrix membranes for gas separations. Nanoscale, 2020, 12, 17405-17410.	5.6	18
25	Hierarchically structured carbon electrodes derived from intrinsically microporous Tröger's base polymers for high-performance supercapacitors. Applied Surface Science, 2020, 530, 147146.	6.1	12
26	Polymer of intrinsic microporosity (PIM) films and membranes in electrochemical energy storage and conversion: A mini-review. Electrochemistry Communications, 2020, 118, 106798.	4.7	45
27	Mitigation of Physical Aging with Mixed Matrix Membranes Based on Cross-Linked PIM-1 Fillers and PIM-1. ACS Applied Materials & amp; Interfaces, 2020, 12, 46756-46766.	8.0	47
28	Photoelectroanalytical Oxygen Detection with Titanate Nanosheet – Platinum Hybrids Immobilised into a Polymer of Intrinsic Microporosity (PIMâ€1). Electroanalysis, 2020, 32, 2756-2763.	2.9	5
29	Indirect photo-electrochemical detection of carbohydrates with Pt@g-C3N4 immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane. Bioelectrochemistry, 2020, 134, 107499.	4.6	12
30	Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage. Angewandte Chemie, 2020, 132, 9651-9660.	2.0	20
31	Acid–Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2020, 59, 10918-10923.	13.8	40
32	Acid–Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction. Angewandte Chemie, 2020, 132, 11010-11015.	2.0	6
33	Flue gas purification with membranes based on the polymer of intrinsic microporosity PIM-TMN-Trip. Separation and Purification Technology, 2020, 242, 116814.	7.9	14
34	Sulfonated Microporous Polymer Membranes with Fast and Selective Ion Transport for Electrochemical Energy Conversion and Storage. Angewandte Chemie - International Edition, 2020, 59, 9564-9573.	13.8	145
35	Polymers of Intrinsic Microporosity (PIMs). Polymer, 2020, 202, 122736.	3.8	94
36	Organic Molecules of Intrinsic Microporosity. Organic Materials, 2020, 02, 020-025.	2.0	10

#	Article	IF	CITATIONS
37	Polymers with intrinsic microporosity (PIMs) for targeted CO2 reduction to ethylene. Chemosphere, 2020, 248, 125993.	8.2	30
38	The immobilisation and reactivity of Fe(CN)63â^'/4â^' in an intrinsically microporous polyamine (PIM-EA-TB). Journal of Solid State Electrochemistry, 2020, 24, 2797-2806.	2.5	14
39	Effect of Bridgehead Methyl Substituents on the Gas Permeability of Tröger's-Base Derived Polymers of Intrinsic Microporosity. Membranes, 2020, 10, 62.	3.0	21
40	Auto-fluorescent PAMAM-based dendritic molecules and their potential application in pharmaceutical sciences. International Journal of Pharmaceutics, 2020, 579, 119187.	5.2	4
41	The origin of size-selective gas transport through polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2019, 7, 20121-20126.	10.3	63
42	Effect of Backbone Rigidity on the Glass Transition of Polymers of Intrinsic Microporosity Probed by Fast Scanning Calorimetry. ACS Macro Letters, 2019, 8, 1022-1028.	4.8	35
43	Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. ACS Applied Materials & Interfaces, 2019, 11, 31191-31199.	8.0	9
44	Redefining the Robeson upper bounds for CO ₂ /CH ₄ and CO ₂ /N ₂ separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy and Environmental Science, 2019, 12, 2733-2740.	30.8	509
45	An Interfacial Layer Based on Polymers of Intrinsic Microporosity to Suppress Dendrite Growth on Li Metal Anodes. Chemistry - A European Journal, 2019, 25, 12052-12057.	3.3	24
46	Polymers of Intrinsic Microporosity in Triphasic Electrochemistry: Perspectives. ChemElectroChem, 2019, 6, 4332-4342.	3.4	25
47	Polymer engineering by blending PIM-1 and 6FDA-DAM for ZIF-8 containing mixed matrix membranes applied to CO2 separations. Separation and Purification Technology, 2019, 224, 456-462.	7.9	36
48	Highly stable fullerene-based porous molecular crystals with open metal sites. Nature Materials, 2019, 18, 740-745.	27.5	18
49	Photoelectrochemistry of immobilised Pt@g-C3N4 mediated by hydrogen and enhanced by a polymer of intrinsic microporosity PIM-1. Electrochemistry Communications, 2019, 103, 1-6.	4.7	18
50	A bio-inspired O2-tolerant catalytic CO2 reduction electrode. Science Bulletin, 2019, 64, 1890-1895.	9.0	61
51	Highly Permeable Matrimid®/PIM-EA(H2)-TB Blend Membrane for Gas Separation. Polymers, 2019, 11, 46.	4.5	31
52	Biphasic Voltammetry and Spectroelectrochemistry in Polymer of Intrinsic Microporosity—4-(3-Phenylpropyl)-Pyridine Organogel/Aqueous Electrolyte Systems: Reactivity of MnPc Versus MnTPP. Electrocatalysis, 2019, 10, 295-304.	3.0	4
53	Highly active manganese porphyrin-based microporous network polymers for selective oxidation reactions. Journal of Catalysis, 2019, 369, 133-142.	6.2	30
54	Polymer of Intrinsic Microporosity (PIMâ€7) Coating Affects Triphasic Palladium Electrocatalysis. ChemElectroChem. 2019. 6. 4307-4317.	3.4	9

#	Article	IF	CITATIONS
55	Gas sorption in polymers of intrinsic microporosity: The difference between solubility coefficients determined via time-lag and direct sorption experiments. Journal of Membrane Science, 2019, 570-571, 522-536.	8.2	29
56	The fabrication of ultrathin films and their gas separation performance from polymers of intrinsic microporosity with two-dimensional (2D) and three-dimensional (3D) chain conformations. Journal of Colloid and Interface Science, 2019, 536, 474-482.	9.4	20
57	Thin film composite membranes based on a polymer of intrinsic microporosity derived from Tröger's base: A combined experimental and computational investigation of the role of residual casting solvent. Journal of Membrane Science, 2019, 569, 17-31.	8.2	25
58	Triphasic Nature of Polymers of Intrinsic Microporosity Induces Storage and Catalysis Effects in Hydrogen and Oxygen Reactivity at Electrode Surfaces. ChemElectroChem, 2019, 6, 252-259.	3.4	30
59	A perfect match. Nature Materials, 2018, 17, 216-217.	27.5	7
60	Synthesis and properties of new aromatic polyimides containing spirocyclic structures. Polymer, 2018, 137, 283-292.	3.8	26
61	Innovative methods in electrochemistry based on polymers of intrinsic microporosity. Current Opinion in Electrochemistry, 2018, 10, 61-66.	4.8	24
62	A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. Journal of Membrane Science, 2018, 561, 39-58.	8.2	77
63	A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity derived from Tröger's base polymerization. Journal of Materials Chemistry A, 2018, 6, 5661-5667.	10.3	92
64	Linking the Cu(II/I) potential to the onset of dynamic phenomena at corroding copper microelectrodes immersed in aqueous 0.5â€M NaCl. Electrochimica Acta, 2018, 260, 348-357.	5.2	9
65	One-step preparation of microporous Pd@cPIM composite catalyst film for triphasic electrocatalysis. Electrochemistry Communications, 2018, 86, 17-20.	4.7	14
66	Hydrogen Separation at High Temperature with Dense and Asymmetric Membranes Based on PIM-EA(H ₂)-TB/PBI Blends. Industrial & Engineering Chemistry Research, 2018, 57, 16909-16916.	3.7	26
67	Temperature and Pressure Dependence of Gas Permeation in a Microporous Tröger's Base Polymer. Membranes, 2018, 8, 132.	3.0	49
68	A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by On-Line Mass Spectrometry: Pressure Dependence of Transport Parameters. Membranes, 2018, 8, 73.	3.0	35
69	Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. ACS Applied Materials & amp; Interfaces, 2018, 10, 36475-36482.	8.0	58
70	The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2018, 6, 10507-10514.	10.3	91
71	Towards High Performance Metal–Organic Framework–Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging by Polymer Doping. Chemistry - A European Journal, 2018, 24, 12796-12800.	3.3	24
72	Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production. Nanomaterials, 2018, 8, 542.	4.1	8

#	Article	IF	CITATIONS
73	Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. Chemical Reviews, 2018, 118, 5871-5911.	47.7	414
74	Ionic Diodes Based on Regenerated α ellulose Films Deposited Asymmetrically onto a Microhole. ChemistrySelect, 2017, 2, 871-875.	1.5	7
75	Polymers of Intrinsic Microporosity derived from a carbocyclic analogue of Tröger's base. Polymer, 2017, 126, 324-329.	3.8	11
76	A porphyrin-based microporous network polymer that acts as an efficient catalyst for cyclooctene and cyclohexane oxidation under mild conditions. Catalysis Communications, 2017, 99, 100-104.	3.3	29
77	Redox reactivity at silver microparticle—glassy carbon contacts under a coating of polymer of intrinsic microporosity (PIM). Journal of Solid State Electrochemistry, 2017, 21, 2141-2146.	2.5	13
78	A Cationic Diode Based on Asymmetric Nafion Film Deposits. ACS Applied Materials & Interfaces, 2017, 9, 11272-11278.	8.0	42
79	Ultrathin Composite Polymeric Membranes for CO ₂ /N ₂ Separation with Minimum Thickness and High CO ₂ Permeance. ChemSusChem, 2017, 10, 4014-4017.	6.8	36
80	The synthesis of polymers of intrinsic microporosity (PIMs). Science China Chemistry, 2017, 60, 1023-1032.	8.2	134
81	lonic Diode Characteristics at a Polymer of Intrinsic Microporosity (PIM) Nafion "Heterojunction― Deposit on a Microhole Poly(ethyleneâ€ŧerephthalate) Substrate. Electroanalysis, 2017, 29, 2217-2223.	2.9	11
82	Polymer ultrapermeability from the inefficient packing of 2D chains. Nature Materials, 2017, 16, 932-937.	27.5	261
83	Synthesis, crystallographic characterization and homogeneous catalytic activity of novel unsymmetric porphyrins. RSC Advances, 2017, 7, 50610-50618.	3.6	17
84	Carbonization of polymers of intrinsic microporosity to microporous heterocarbon: Capacitive pH measurements. Applied Materials Today, 2017, 9, 136-144.	4.3	11
85	High-Utilisation Nanoplatinum Catalyst (Pt@cPIM) Obtained via Vacuum Carbonisation in a Molecularly Rigid Polymer of Intrinsic Microporosity. Electrocatalysis, 2017, 8, 132-143.	3.0	12
86	Potassium cation induced ionic diode blocking for a polymer of intrinsic microporosity nafion "heterojunction―on a microhole substrate. Electrochimica Acta, 2017, 258, 807-813.	5.2	21
87	The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing. Chemistry - A European Journal, 2016, 22, 2466-2472.	3.3	49
88	Enhancing the Gas Permeability of Tröger's Base Derived Polyimides of Intrinsic Microporosity. Macromolecules, 2016, 49, 4147-4154.	4.8	115
89	Reagentless Electrochemiluminescence from a Nanoparticulate Polymer of Intrinsic Microporosity (PIMâ€1) Immobilized onto Tinâ€Doped Indium Oxide. ChemElectroChem, 2016, 3, 2160-2164.	3.4	7
90	Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation. Journal of Membrane Science, 2016, 520, 895-906.	8.2	34

#	Article	IF	CITATIONS
91	Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes. ACS Applied Materials & Interfaces, 2016, 8, 27311-27321.	8.0	93
92	Highly Conductive Anionâ€Exchange Membranes from Microporous Tröger's Base Polymers. Angewandte Chemie - International Edition, 2016, 55, 11499-11502.	13.8	206
93	Molecularly Rigid Microporous Polyamine Captures and Stabilizes Conducting Platinum Nanoparticle Networks. ACS Applied Materials & Interfaces, 2016, 8, 22425-22430.	8.0	14
94	A hindered subphthalocyanine that forms crystals with included aromatic solvent but will not play ball with C ₆₀ . Journal of Porphyrins and Phthalocyanines, 2016, 20, 1034-1040.	0.8	5
95	Highly Conductive Anionâ€Exchange Membranes from Microporous Tröger's Base Polymers. Angewandte Chemie, 2016, 128, 11671-11674.	2.0	47
96	Inexpensive polyphenylene network polymers with enhanced microporosity. Journal of Materials Chemistry A, 2016, 4, 10110-10113.	10.3	66
97	Contorted separation. Nature Materials, 2016, 15, 706-707.	27.5	21
98	pH-induced reversal of ionic diode polarity in 300 nm thin membranes based on a polymer of intrinsic microporosity. Electrochemistry Communications, 2016, 69, 41-45.	4.7	30
99	Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM). RSC Advances, 2016, 6, 9315-9319.	3.6	16
100	Polymers of intrinsic microporosity in electrochemistry: Anion uptake and transport effects in thin film electrodes and in free-standing ionic diode membranes. Journal of Electroanalytical Chemistry, 2016, 779, 241-249.	3.8	21
101	Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations. Electrocatalysis, 2016, 7, 70-78.	3.0	18
102	Fabrication of ultrathin films containing the metal organic framework Fe-MIL-88B-NH 2 by the Langmuir–Blodgett technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 161-170.	4.7	28
103	Electrocatalytic Carbohydrate Oxidation with 4-Benzoyloxy-TEMPO Heterogenised in a Polymer of Intrinsic Microporosity. Electrochimica Acta, 2015, 160, 195-201.	5.2	25
104	Intrinsically microporous polymer slows down fuel cell catalyst corrosion. Electrochemistry Communications, 2015, 59, 72-76.	4.7	28
105	Water desalination concept using an ionic rectifier based on a polymer of intrinsic microporosity (PIM). Journal of Materials Chemistry A, 2015, 3, 15849-15853.	10.3	54
106	Intrinsically Microporous Polymer Retains Porosity in Vacuum Thermolysis to Electroactive Heterocarbon. Langmuir, 2015, 31, 12300-12306.	3.5	25
107	Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. ACS Macro Letters, 2015, 4, 912-915.	4.8	159
108	Polymers of intrinsic microporosity as high temperature templates for the formation of nanofibrous oxides. RSC Advances, 2015, 5, 73323-73326.	3.6	22

#	Article	IF	CITATIONS
109	Intrinsically Porous Polymer Protects Catalytic Gold Particles for Enzymeless Glucose Oxidation. Electroanalysis, 2014, 26, 904-909.	2.9	39
110	Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger's Base Polymers. Advanced Materials, 2014, 26, 3526-3531.	21.0	347
111	Triptycene-Based Organic Molecules of Intrinsic Microporosity. Organic Letters, 2014, 16, 1848-1851.	4.6	55
112	Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Tröger's Base Units. Macromolecules, 2014, 47, 7900-7916.	4.8	104
113	Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity. Macromolecules, 2014, 47, 8320-8327.	4.8	82
114	Heterogeneous organocatalysts composed of microporous polymer networks assembled by Tröger's base formation. Polymer Chemistry, 2014, 5, 5262.	3.9	44
115	Metastable Ionic Diodes Derived from an Amineâ€Based Polymer of Intrinsic Microporosity. Angewandte Chemie - International Edition, 2014, 53, 10751-10754.	13.8	81
116	Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study. Journal of Materials Chemistry A, 2014, 2, 11742-11752.	10.3	71
117	Synthesis of cardo-polymers using Tröger's base formation. Polymer Chemistry, 2014, 5, 5255.	3.9	63
118	A highly permeable polyimide with enhanced selectivity for membrane gas separations. Journal of Materials Chemistry A, 2014, 2, 4874-4877.	10.3	159
119	High density heterogenisation of molecular electrocatalysts in a rigid intrinsically microporous polymer host. Electrochemistry Communications, 2014, 46, 26-29.	4.7	28
120	The synthesis of microporous polymers using Tröger's base formation. Polymer Chemistry, 2014, 5, 5267-5272.	3.9	105
121	Centrotriindane- and triptindane-based polymers of intrinsic microporosity. Polymer, 2014, 55, 326-329.	3.8	23
122	Polymers of intrinsic microporosity in electrocatalysis: Novel pore rigidity effects and lamella palladium growth. Electrochimica Acta, 2014, 128, 3-9.	5.2	42
123	The synthesis and study of fluorescent PAMAM-based dendritic molecules. Tetrahedron, 2013, 69, 8439-8445.	1.9	6
124	In-situ coordination chemistry within cobalt-containing phthalocyanine nanoporous crystals. CrystEngComm, 2013, 15, 1545.	2.6	3
125	Simulated swelling during low-temperature N ₂ adsorption in polymers of intrinsic microporosity. Physical Chemistry Chemical Physics, 2013, 15, 20161-20169.	2.8	40
126	Tunable Porous Organic Crystals: Structural Scope and Adsorption Properties of Nanoporous Steroidal Ureas. Journal of the American Chemical Society, 2013, 135, 16912-16925.	13.7	47

#	Article	IF	CITATIONS
127	Design principles for microporous organic solids from predictive computational screening. Journal of Materials Chemistry A, 2013, 1, 11950.	10.3	37
128	An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science, 2013, 339, 303-307.	12.6	884
129	A polymer of intrinsic microporosity as the active binder to enhance adsorption/separation properties of composite hollow fibres. Microporous and Mesoporous Materials, 2013, 170, 105-112.	4.4	14
130	Polymers of Intrinsic Microporosity Containing Tröger Base for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2013, 52, 16939-16950.	3.7	60
131	Efficient and Rapid Screening of Novel Adsorbents for Carbon Capture in the UK IGSCC Project. Energy Procedia, 2013, 37, 40-47.	1.8	15
132	The tetratriptycenoporphyrazines revisited. Journal of Porphyrins and Phthalocyanines, 2013, 17, 778-784.	0.8	2
133	Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity. Polymer Chemistry, 2013, 4, 3813.	3.9	141
134	Toward Effective CO ₂ /CH ₄ Separations by Sulfur-Containing PIMs via Predictive Molecular Simulations. Macromolecules, 2013, 46, 5371-5380.	4.8	58
135	Characterizing the Structure of Organic Molecules of Intrinsic Microporosity by Molecular Simulations and X-ray Scattering. Journal of Physical Chemistry B, 2013, 117, 355-364.	2.6	51
136	The unexpected formation of a dihydroisobenzofuran derivative from the addition of a Grignard reagent to a 1,3-indanedione. Arkivoc, 2013, 2012, 190-195.	0.5	0
137	Polymers of Intrinsic Microporosity. ISRN Materials Science, 2012, 2012, 1-16.	1.0	165
138	Intrinsic Microporosity Polymers (tb–pims) Membrane of New Generation: Molecular Modelling and Permeation Properties. Procedia Engineering, 2012, 44, 113-115.	1.2	0
139	Analysis of Gas and Vapour Transport in Novel Polymers of Intrinsic Microporosity (PIMs). Procedia Engineering, 2012, 44, 150-151.	1.2	0
140	A Spirobifluoreneâ€Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation. Advanced Materials, 2012, 24, 5930-5933.	21.0	306
141	Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. Journal of Catalysis, 2012, 290, 177-185.	6.2	30
142	The synthesis and fluorescence properties of macromolecular components based on 1,8-naphthalimide derivatives and dimers. Tetrahedron Letters, 2012, 53, 808-810.	1.4	6
143	Crystal Structures of a Series of 1,1-Spiro-bis(1,2,3,4-tetrahydronaphthalene)-Based Derivatives. Journal of Chemical Crystallography, 2012, 42, 111-118.	1.1	3
144	Tribenzotriquinacene-based polymers of intrinsic microporosity. Polymer Chemistry, 2011, 2, 2257.	3.9	64

#	Article	IF	CITATIONS
145	Enhancing the rigidity of a network polymer of intrinsic microporosity by the combined use of phthalocyanine and triptycene components,. Polymer Chemistry, 2011, 2, 2190.	3.9	29
146	Predictable porosity. Nature Materials, 2011, 10, 563-564.	27.5	11
147	Hexaphenylbenzene-based polymers of intrinsic microporosity. Chemical Communications, 2011, 47, 6822.	4.1	77
148	Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide. Journal of Controlled Release, 2011, 151, 83-94.	9.9	22
149	Crystal Structures of 5,6,5′,6′-Tetramethoxy-1,1′-spirobisindane-3,3′-dione and two of its Fluorene Adducts. Journal of Chemical Crystallography, 2011, 41, 98-104.	1.1	8
150	Synthesis and Gas Permeation Properties of Spirobischromaneâ€Based Polymers of Intrinsic Microporosity. Macromolecular Chemistry and Physics, 2011, 212, 1137-1146.	2.2	104
151	Synthesis and crystal structure of a novel phthalocyanine-calixarene conjugate. Journal of Porphyrins and Phthalocyanines, 2011, 15, 686-690.	0.8	7
152	Laser Chemosensor with Rapid Responsivity and Inherent Memory Based on a Polymer of Intrinsic Microporosity. Sensors, 2011, 11, 2478-2487.	3.8	66
153	Highly permeable polymers for gas separation membranes. Polymer Chemistry, 2010, 1, 63.	3.9	308
154	Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption. Macromolecules, 2010, 43, 5287-5294.	4.8	275
155	Exploitation of Intrinsic Microporosity in Polymer-Based Materials. Macromolecules, 2010, 43, 5163-5176.	4.8	725
156	Heme-Like Coordination Chemistry Within Nanoporous Molecular Crystals. Science, 2010, 327, 1627-1630.	12.6	187
157	Nanoporous molecular crystals. Journal of Materials Chemistry, 2010, 20, 10588.	6.7	240
158	Nitrogen and Hydrogen Adsorption by an Organic Microporous Crystal. Angewandte Chemie - International Edition, 2009, 48, 3273-3277.	13.8	132
159	Novel polymers of intrinsic microporosity (PIMs) derived from 1,1-spiro-bis(1,2,3,4-tetrahydronaphthalene)-based monomers. Tetrahedron Letters, 2009, 50, 5954-5957.	1.4	41
160	Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides. Macromolecules, 2009, 42, 7881-7888.	4.8	250
161	Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). Journal of Membrane Science, 2008, 318, 84-99.	8.2	227
162	Clathrate Formation from Octaazaphthalocyanines Possessing Bulky Phenoxyl Substituents: A New Cubic Crystal Containing Solventâ€Filled, Nanoscale Voids. Chemistry - A European Journal, 2008, 14, 4810-4815.	3.3	36

#	Article	IF	CITATIONS
163	Highâ€Performance Membranes from Polyimides with Intrinsic Microporosity. Advanced Materials, 2008, 20, 2766-2771.	21.0	307
164	Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1. Journal of Membrane Science, 2008, 325, 851-860.	8.2	470
165	Pervaporation of alcohols through highly permeable PIM-1 polymer films. Polymer Science - Series A, 2008, 50, 444-450.	1.0	78
166	Novel Spirobisindanes for Use as Precursors to Polymers of Intrinsic Microporosity. Organic Letters, 2008, 10, 2641-2643.	4.6	83
167	Polymers of Intrinsic Microporosity Derived from Bis(phenazyl) Monomers. Macromolecules, 2008, 41, 1640-1646.	4.8	150
168	Catalysis by microporous phthalocyanine and porphyrin network polymers. Journal of Materials Chemistry, 2008, 18, 573-578.	6.7	246
169	Towards phthalocyanine network polymers for heterogeneous catalysis. Special Publication - Royal Society of Chemistry, 2007, , 214-218.	0.0	2
170	The synthesis of robust, polymeric hole-transport materials from oligoarylamine substituted styrenes. Journal of Materials Chemistry, 2007, 17, 2088.	6.7	27
171	A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chemical Communications, 2007, , 67-69.	4.1	282
172	The potential of organic polymer-based hydrogen storage materials. Physical Chemistry Chemical Physics, 2007, 9, 1802.	2.8	197
173	The Self-Ordering Properties of Novel Phthalocyanines with Out-of-Plane Alkyl Substituents. Chemistry - A European Journal, 2007, 13, 228-234.	3.3	25
174	Microporous Polymers as Potential Hydrogen Storage Materials. Macromolecular Rapid Communications, 2007, 28, 995-1002.	3.9	176
175	The synthesis of metal-free octaazaphthalocyanine derivatives containing bulky phenoxy substituents to prevent self-association. Tetrahedron Letters, 2007, 48, 7358-7361.	1.4	28
176	Unusual temperature dependence of the positron lifetime in a polymer of intrinsic microporosity. Physica Status Solidi - Rapid Research Letters, 2007, 1, 190-192.	2.4	32
177	Polymers of Intrinsic Microporosity (PIMs): High Free Volume Polymers for Membrane Applications. Macromolecular Symposia, 2006, 245-246, 403-405.	0.7	80
178	Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chemical Society Reviews, 2006, 35, 675.	38.1	1,545
179	Adsorption Studies of a Microporous Phthalocyanine Network Polymer. Langmuir, 2006, 22, 4225-4229.	3.5	103
180	Towards Polymer-Based Hydrogen Storage Materials: Engineering Ultramicroporous Cavities within Polymers of Intrinsic Microporosity. Angewandte Chemie - International Edition, 2006, 45, 1804-1807.	13.8	421

#	Article	IF	CITATIONS
181	A novel series of styreneâ€based liquid crystal monomers displaying either nematic or chiral nematic phases. Liquid Crystals, 2006, 33, 1021-1026.	2.2	2
182	Gas separation membranes from polymers of intrinsic microporosity. Journal of Membrane Science, 2005, 251, 263-269.	8.2	730
183	A Phthalocyanine Clathrate of Cubic Symmetry Containing Interconnected Solvent-Filled Voids of Nanometer Dimensions. Angewandte Chemie - International Edition, 2005, 44, 7546-7549.	13.8	63
184	Cover Picture: A Phthalocyanine Clathrate of Cubic Symmetry Containing Interconnected Solvent-Filled Voids of Nanometer Dimensions (Angew. Chem. Int. Ed. 46/2005). Angewandte Chemie - International Edition, 2005, 44, 7485-7485.	13.8	1
185	Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials. Chemistry - A European Journal, 2005, 11, 2610-2620.	3.3	461
186	Inducing solid-state isolation of the phthalocyanine macrocycle by its incorporation within rigid, randomly shaped oligomers. Journal of Materials Chemistry, 2005, 15, 1865.	6.7	19
187	A non-planar, hexadeca-substituted, metal-free phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2005, 09, 841-845.	0.8	18
188	Free volume and intrinsic microporosity in polymers. Journal of Materials Chemistry, 2005, 15, 1977.	6.7	364
189	Microporous polymeric materials. Materials Today, 2004, 7, 40-46.	14.2	43
190	Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Advanced Materials, 2004, 16, 456-459.	21.0	788
191	The Synthesis of Symmetrical Phthalocyanines. ChemInform, 2004, 35, no.	0.0	4
192	Macrodiscotic liquid crystals derived from planar phthalocyanine oligomers. Tetrahedron Letters, 2004, 45, 4865-4868.	1.4	30
193	Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chemical Communications, 2004, , 230.	4.1	1,084
194	Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharmaceutical Research, 2003, 20, 1543-1550.	3.5	231
195	Phthalocyanine-Centered and Naphthalocyanine-Centered Aryl Ether Dendrimers with Oligo(ethyleneoxy) Surface Groups ChemInform, 2003, 34, no.	0.0	0
196	Phthalocyanine-centred and naphthalocyanine-centred aryl ether dendrimers with oligo(ethyleneoxy) surface groups. Tetrahedron, 2003, 59, 3863-3872.	1.9	50
197	The influence of surface modification on the cytotoxicity of PAMAM dendrimers. International Journal of Pharmaceutics, 2003, 252, 263-266.	5.2	655
198	A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support. Journal of Materials Chemistry, 2003, 13, 2721-2726.	6.7	128

#	Article	IF	CITATIONS
199	The Synthesis of Symmetrical Phthalocyanines. , 2003, , 61-124.		38
200	The synthesis of phthalocyanines containing both nitrile and non-peripheral alkyl or alkoxy side-chains. Journal of Porphyrins and Phthalocyanines, 2003, 07, 125-130.	0.8	2
201	Phthalocyanine-based nanoporous network polymers. Chemical Communications, 2002, , 2780-2781.	4.1	179
202	Porphyrin-based nanoporous network polymers. Chemical Communications, 2002, , 2782-2783.	4.1	157
203	Styrene-containing mesogens. Part 1: photopolymerisable nematic liquid crystals. Journal of Materials Chemistry, 2002, 12, 2675-2683.	6.7	7
204	Studies on the release of polymeric Langmuir–Blodgett multilayers from the solid supports on which they were prepared. Polymer, 2002, 43, 3519-3525.	3.8	1
205	Title is missing!. Journal of Materials Chemistry, 2001, 11, 2784-2789.	6.7	31
206	Preparation and characterisation of a chromophore-bearing dendrimer. Polymer, 2001, 42, 889-896.	3.8	11
207	Phthalocyanine-centred aryl ether dendrimers with oligo(ethyleneoxy) surface groups. Tetrahedron Letters, 2001, 42, 813-816.	1.4	40
208	The Synthesis and Glass-Forming Properties of Phthalocyanine-Containing Poly(aryl ether) Dendrimers. Chemistry - A European Journal, 2000, 6, 4630-4636.	3.3	80
209	The synthetic quest for â€~splendid isolation' within phthalocyanine materials. Journal of Porphyrins and Phthalocyanines, 2000, 04, 460-464.	0.8	37
210	Polyamidoamine Starburst \hat{A}^{\circledast} dendrimers as solubility enhancers. International Journal of Pharmaceutics, 2000, 197, 239-241.	5.2	211
211	Phthalocyanine-containing polymers. Journal of Materials Chemistry, 2000, 10, 1979-1995.	6.7	169
212	The control of molecular self-association in spin-coated films of substituted phthalocyanines. Journal of Materials Chemistry, 2000, 10, 39-45.	6.7	115
213	Ordered Langmuir–Blodgett films derived from a mesogenic polymer amphiphile. Journal of Materials Chemistry, 2000, 10, 2270-2273.	6.7	4
214	The synthetic quest for †splendid isolation' within phthalocyanine materials. Journal of Porphyrins and Phthalocyanines, 2000, 4, 460-464.	0.8	1
215	Phthalocyanine-Containing Dendrimers. Advanced Materials, 1999, 11, 67-69.	21.0	49
216	Novel spiro-polymers with enhanced solubility. Chemical Communications, 1999, , 255-256.	4.1	21

#	Article	IF	CITATIONS
217	Phthalocyanine-containing polystyrenes. Chemical Communications, 1999, , 419-420.	4.1	20
218	The Synthesis of Some Phthalocyanines and Napthalocyanines Derived from Sterically Hindered Phenols. Chemistry - A European Journal, 1998, 4, 1633-1640.	3.3	66
219	Silicon Phthalocyanines with Axial Dendritic Substituents. Angewandte Chemie - International Edition, 1998, 37, 1092-1094.	13.8	83
220	Properties of polymeric Langmuir–Blodgett films containing sulphonyl-substituted azobenzene moieties for second harmonic generation. Thin Solid Films, 1998, 323, 227-234.	1.8	5
221	Molecular assemblies of novel amphiphilic phthalocyanines: an investigation into the self-ordering properties of complex functional materials. Journal of Materials Chemistry, 1998, 8, 2371-2378.	6.7	36
222	Second harmonic generation from Langmuir–Blodgett multilayers assembled from â€~active' non-polymeric amphiphiles and â€~inactive' polymeric amphiphiles. Journal of Materials Chemistry, 1998, 8, 1391-1397.	6.7	4
223	A Study of Lyotropic Mesophases of Concentrated Solutions of a Triblock Copolymer of Ethylene Oxide and 1,2-Butylene Oxide, E16B10E16, Using Rheometry, Polarized Light Microscopy, and Small-Angle X-ray Scattering. Langmuir, 1998, 14, 5782-5789.	3.5	31
224	Effect of Block Architecture on the Gelation of Aqueous Solutions of Oxyethylene/Oxybutylene Block Copolymers. Langmuir, 1997, 13, 1860-1861.	3.5	35
225	Studies of the thermotropic mesophase behaviour exhibited by a highly asymmetric tetrabenzotriazaporphyrin derivative. Liquid Crystals, 1997, 23, 475-479.	2.2	13
226	Synthesis of a phthalocyanine derivative containing easily oxidised sterically-hindered phenolic substituents. Chemical Communications, 1997, , 1979.	4.1	8
227	Synthesis and liquid crystal properties of phthalocyanine derivatives containing both alkyl and readily oxidised phenolic substituents. Journal of Materials Chemistry, 1996, 6, 315.	6.7	17
228	Thermotropic and Lyotropic Mesophase Behavior of Some Novel Phthalocyanine-Centered Poly(oxyethylene)s. Macromolecules, 1996, 29, 1854-1856.	4.8	33
229	Solvent cast films derived from amphiphilic phthalocyanines: an alternative to the Langmuir–Blodgett technique for the preparation of ordered multilayer films. Chemical Communications, 1996, , 73-75.	4.1	22
230	Synthesis and Characterization of Mesogenic Phthalocyanines Containing a Single Poly(oxyethylene) Side Chain:Â An Example of Steric Disturbance of the Hexagonal Columnar Mesophase. Macromolecules, 1996, 29, 913-917.	4.8	39
231	Synthesis of novel conjugated polymers containing alternating hexa-1,3,5-triene and bi-p-phenylene or ter-p-phenylene segments. Chemical Communications, 1996, , 655.	4.1	6
232	Novel Amphiphilic Phthalocyanine Mesogens. Molecular Crystals and Liquid Crystals, 1995, 260, 255-260.	0.3	10
233	Synthesis and characterisation of some novel phthalocyanines containing both oligo(ethyleneoxy) and alkyl or alkoxy side-chains: novel unsymmetrical discotic mesogens. Journal of the Chemical Society Perkin Transactions 1, 1995, , 1817.	0.9	78
234	Stable glass formation by a hexagonal ordered columnar mesophase of a low molar mass phthalocyanine derivative. Liquid Crystals, 1995, 19, 887-889.	2.2	28

#	Article	IF	CITATIONS
235	Lyotropic and thermotropic mesophase formation of novel tetra[oligo(ethyleneoxy)]-substituted phthalocyanines. Journal of Materials Chemistry, 1994, 4, 1153.	6.7	67
236	Surface modification of the biomedical polymer poly(ethylene terephthalate). Analyst, The, 1993, 118, 463-474.	3.5	107
237	Surface selective modification of fluoropolymer biomaterial. International Biodeterioration and Biodegradation, 1992, 30, 217-231.	3.9	5
238	Spectroscopic and X-ray diffraction study of Langmuir–Blodgett films of some 1,4,8,11,15,18-hexaalkyl-22,25-bis(carboxypropyl)phthalocyanines. Journal of Materials Chemistry, 1991, 1, 121-127.	6.7	62
239	Surface selective chemical modification of fluoropolymer using aluminum deposition. Langmuir, 1991, 7, 2146-2152.	3.5	7
240	Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa(alkoxymethyl)phthalocyanines; a new series of discotic liquid crystals. Journal of the Chemical Society Perkin Transactions 1, 1991, , 3053.	0.9	39
241	Improved biocompatability of silicone rubber by removal of surface entrapped air nuclei. Journal of Biomedical Materials Research Part B, 1991, 25, 199-211.	3.1	18
242	Synthesis and characterisation of some 1,4,8,11,15,18,22,25-octa-alkyl- and 1,4,8,11,15,18-hexa-alkyl-22,25-bis(carboxypropyl)phthalocyanines. Journal of the Chemical Society Perkin Transactions 1, 1990, , 1169.	0.9	107
243	Preparation of substituted tetrabenzotriazaporphyrins and a tetranaphthotriazaporphyrin: a route to mono-meso-substituted phthalocyanine analogs. Journal of Organic Chemistry, 1990, 55, 2186-2190.	3.2	34
244	Molecular assemblies in discotic mesophases and Langmuir-Blodgett films of 1,4,8,11,15,18,22,25-octasubstituted phthalocyanines. Chemistry of Materials, 1989, 1, 287-289.	6.7	30
245	New asymmetric substitution of phthalocyanines: Derivatives designed for deposition as Langmuir-Blodgett films. Thin Solid Films, 1988, 159, 469-478.	1.8	72
246	1,4,8,11,15,18-Hexa-alkyl-22,25-bis(carboxypropyl)phthalocyanines: materials designed for deposition as Langmuir–Blodgett films. Journal of the Chemical Society Chemical Communications, 1987, , 1148-1150.	2.0	43
247	1,4,8,11,15,18,22,25-Octa-alkyl phthalocyanines: new discotic liquid crystal materials. Journal of the Chemical Society Chemical Communications, 1987, , 1086.	2.0	81