Michelle A Dunstone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5280023/publications.pdf

Version: 2024-02-01

47 papers 3,738 citations

30 h-index 223800 46 g-index

51 all docs

51 docs citations

51 times ranked

4592 citing authors

#	Article	IF	CITATIONS
1	Going full circle: Determining the structures of complement component 9. Methods in Enzymology, 2021, 649, 103-123.	1.0	4
2	Branching out the aerolysin, ETX/MTX-2 and Toxin_10 family of pore forming proteins. Journal of Invertebrate Pathology, 2021, 186, 107570.	3.2	9
3	Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector. Frontiers in Immunology, 2020, 11, 581906.	4.8	17
4	Three-Dimensional Chemical Mapping of a Single Protein in the Hydrated State with Atom Probe Tomography. Analytical Chemistry, 2020, 92, 5168-5177.	6.5	15
5	The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1. Nature Communications, 2019, 10, 4288.	12.8	65
6	The first transmembrane region of complement component-9 acts as a brake on its self-assembly. Nature Communications, 2018, 9, 3266.	12.8	56
7	Evaluation of Serum Glycoprotein Biomarker Candidates for Detection of Esophageal Adenocarcinoma and Surveillance of Barrett's Esophagus. Molecular and Cellular Proteomics, 2018, 17, 2324-2334.	3.8	25
8	Real-time visualization of perforin nanopore assembly. Nature Nanotechnology, 2017, 12, 467-473.	31.5	88
9	Cryo-electron tomography: an ideal method to study membrane-associated proteins. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160210.	4.0	16
10	The mystery behind membrane insertion: a review of the complement membrane attack complex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160221.	4.0	132
11	The emerging role of pore forming proteins in cell biology and development. Seminars in Cell and Developmental Biology, 2017, 72, 99-100.	5.0	0
12	Structure of the poly-C9 component of the complement membrane attack complex. Nature Communications, 2016, 7, 10588.	12.8	112
13	Giant MACPF/CDC pore forming toxins: A class of their own. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 475-486.	2.6	61
14	Stonefish toxin defines an ancient branch of the perforin-like superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15360-15365.	7.1	69
15	Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin. PLoS Biology, 2015, 13, e1002049.	5.6	114
16	A New Model for Pore Formation by Cholesterol-Dependent Cytolysins. PLoS Computational Biology, 2014, 10, e1003791.	3.2	33
17	The Perforin Pore Facilitates the Delivery of Cationic Cargos. Journal of Biological Chemistry, 2014, 289, 9172-9181.	3.4	30
18	The Cellular Redox Environment Alters Antigen Presentation. Journal of Biological Chemistry, 2014, 289, 27979-27991.	3.4	52

#	Article	IF	CITATIONS
19	Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. ELife, 2014, 3, e04247.	6.0	145
20	Torqueing about pores. Nature Chemical Biology, 2013, 9, 605-606.	8.0	1
21	Predicting giant transmembrane β-barrel architecture. Bioinformatics, 2012, 28, 1299-1302.	4.1	25
22	Perforin evolved from a gene duplication of MPEG1, followed by a complex pattern of gene gain and loss within Euteleostomi. BMC Evolutionary Biology, 2012, 12, 59.	3.2	43
23	Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Current Opinion in Structural Biology, 2012, 22, 342-349.	5.7	95
24	Screening of 71 P. multocida Proteins for Protective Efficacy in a Fowl Cholera Infection Model and Characterization of the Protective Antigen PlpE. PLoS ONE, 2012, 7, e39973.	2.5	32
25	The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature, 2010, 468, 447-451.	27.8	364
26	Perforin: structure, function, and role in human immunopathology. Immunological Reviews, 2010, 235, 35-54.	6.0	171
27	The structure and function of mammalian membrane-attack complex/perforin-like proteins. Tissue Antigens, 2010, 76, 341-351.	1.0	63
28	Constraints within major histocompatibility complex class I restricted peptides: Presentation and consequences for T-cell recognition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5534-5539.	7.1	58
29	The Type III Effectors NIeE and NIeB from Enteropathogenic E. coli and OspZ from Shigella Block Nuclear Translocation of NF-Î [®] B p65. PLoS Pathogens, 2010, 6, e1000898.	4.7	201
30	The Molecular Basis for Perforin Oligomerization and Transmembrane Pore Assembly. Immunity, 2009, 30, 684-695.	14.3	123
31	Antigen Ligation Triggers a Conformational Change within the Constant Domain of the $\hat{l}\pm\hat{l}^2$ T Cell Receptor. Immunity, 2009, 30, 777-788.	14.3	111
32	Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9809-9814.	7.1	114
33	The MACPF/CDC family of pore-forming toxins. Cellular Microbiology, 2008, 10, 1765-1774.	2.1	250
34	Structural and Biological Basis of CTL Escape in Coronavirus-Infected Mice. Journal of Immunology, 2008, 180, 3926-3937.	0.8	23
35	Enzymatic Properties of an Ecto-nucleoside Triphosphate Diphosphohydrolase from Legionella pneumophila. Journal of Biological Chemistry, 2008, 283, 12909-12918.	3.4	54
36	Prevention of Cytotoxic T Cell Escape Using a Heteroclitic Subdominant Viral T Cell Determinant. PLoS Pathogens, 2008, 4, e1000186.	4.7	14

3

#	Article	IF	CITATIONS
37	Characterization of TolC Efflux Pump Proteins from <i>Pasteurella multocida</i> Antimicrobial Agents and Chemotherapy, 2008, 52, 4166-4171.	3.2	11
38	Epitope-specific $TCR^{\hat{1}^2}$ repertoire diversity imparts no functional advantage on the CD8 ⁺ T cell response to cognate viral peptides. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2034-2039.	7.1	50
39	A Common Fold Mediates Vertebrate Defense and Bacterial Attack. Science, 2007, 317, 1548-1551.	12.6	261
40	Specificity on a knife-edge: the $\hat{l}\pm\hat{l}^2$ T cell receptor. Current Opinion in Structural Biology, 2006, 16, 787-795.	5.7	44
41	Lack of prominent peptide–major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations. Nature Immunology, 2005, 6, 382-389.	14.5	142
42	T Cell Determinants Incorporating \hat{l}^2 -Amino Acid Residues Are Protease Resistant and Remain Immunogenic In Vivo. Journal of Immunology, 2005, 175, 3810-3818.	0.8	56
43	Crystal structure of HLA-G: A nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3360-3365.	7.1	139
44	Crystal structure of the human T cell receptor CD3ÂÂ heterodimer complexed to the therapeutic mAb OKT3. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7675-7680.	7.1	148
45	Functional and Structural Characteristics of NY-ESO-1-related HLA A2-restricted Epitopes and the Design of a Novel Immunogenic Analogue. Journal of Biological Chemistry, 2004, 279, 23438-23446.	3.4	61
46	The Structure of H-2Kb and Kbm8 Complexed to a Herpes Simplex Virus Determinant: Evidence for a Conformational Switch That Governs T Cell Repertoire Selection and Viral Resistance. Journal of Immunology, 2004, 173, 402-409.	0.8	31
47	The production and purification of the human T-cell receptors, the CD3â^Sγ and CD3â^SÎ^ heterodimers: complex formation and crystallization with OKT3, a therapeutic monoclonal antibody. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1425-1428.	2.5	4