Vladimir L Zholobenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5278777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance modelling of zeolite-based potentiometric sensors. Sensors and Actuators B: Chemical, 2022, 356, 131343.	7.8	7
2	Thinglink and the Laboratory: Interactive Simulations of Analytical Instrumentation for HE Science Curricula. Journal of Chemical Education, 2022, 99, 2277-2290.	2.3	5
3	In situ spectroscopic identification of the six types of asbestos. Journal of Hazardous Materials, 2021, 403, 123951.	12.4	11
4	lon sensing pencil: Draw your own sensor. Sensors and Actuators B: Chemical, 2021, 337, 129751.	7.8	4
5	On the influence of alumina as a binder on the performance of Pt-Beta catalyst during the transalkylation of toluene and 1,2,4-Trimethylbenzene. Microporous and Mesoporous Materials, 2021, 320, 111095.	4.4	4
6	A Pencil-Drawn Electronic Tongue for Environmental Applications. Sensors, 2021, 21, 4471.	3.8	6
7	Heterogeneous ketonic decarboxylation of dodecanoic acid: studying reaction parameters. RSC Advances, 2021, 11, 35575-35584.	3.6	1
8	Nanostructured large-pore zeolite: The enhanced accessibility of active sites and its effect on the catalytic performance. Microporous and Mesoporous Materials, 2020, 293, 109805.	4.4	29
9	Effect of hydrogenative regeneration on the activity of beta and Pt-Beta zeolites during the transalkylation of toluene with 1,2,4-trimethylbenzene. Microporous and Mesoporous Materials, 2020, 293, 109737.	4.4	7
10	Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nature Energy, 2020, 5, 511-519.	39.5	130
11	The effect of ZSM-5 zeolite crystal size on p-xylene selectivity in toluene disproportionation. Microporous and Mesoporous Materials, 2020, 302, 110221.	4.4	24
12	Probing the acid sites of zeolites with pyridine: Quantitative AGIR measurements of the molar absorption coefficients. Journal of Catalysis, 2020, 385, 52-60.	6.2	106
13	Influence of Precursors on the Induction Period and Transition Regime of Dimethyl Ether Conversion to Hydrocarbons over ZSM-5 Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 16479-16488.	3.7	9
14	Versatile Roles of Metal Species in Carbon Nanotube Templates for the Synthesis of Metal–Zeolite Nanocomposite Catalysts. ACS Applied Nano Materials, 2019, 2, 4507-4517.	5.0	9
15	External surface phenomena in dealumination and desilication of large single crystals of ZSM-5 zeolite synthesized from a sustainable source. Microporous and Mesoporous Materials, 2019, 286, 57-64.	4.4	44
16	Synthesis of nanostructured catalysts by surfactant-templating of large-pore zeolites. Nanoscale Advances, 2019, 1, 2029-2039.	4.6	20
17	lon-exchanged zeolite P as a nanostructured catalyst for biodiesel production. Energy Reports, 2019, 5, 357-363.	5.1	16
18	Nickel–zeolite composite catalysts with metal nanoparticles selectively encapsulated in the zeolite micropores. Journal of Materials Science, 2019, 54, 5399-5411.	3.7	27

#	Article	IF	CITATIONS
19	Catalytic performance of microporous materials for the production of renewable fuels. Journal of Porous Materials, 2019, 26, 69-76.	2.6	1
20	Direct Production of Isoâ€Paraffins from Syngas over Hierarchical Cobaltâ€ZSMâ€5 Nanocomposites Synthetized by using Carbon Nanotubes as Sacrificial Templates. ChemCatChem, 2018, 10, 2291-2299.	3.7	25
21	Nanostructured Zeolites: The Introduction of Intracrystalline Mesoporosity in Basic Faujasite-type Catalysts. ACS Applied Nano Materials, 2018, 1, 310-318.	5.0	39
22	Formation of copper nanoparticles in LTL nanosized zeolite: spectroscopic characterization. Physical Chemistry Chemical Physics, 2018, 20, 2880-2889.	2.8	11
23	Ketone Formation via Decarboxylation Reactions of Fatty Acids Using Solid Hydroxide/Oxide Catalysts. Inorganics, 2018, 6, 121.	2.7	7
24	Structural features and stability of Spanish sepiolite as a potential catalyst. Applied Clay Science, 2018, 162, 297-304.	5.2	16
25	Accessibility and Location of Acid Sites in Zeolites as Probed by Fourier Transform Infrared Spectroscopy and Magic Angle Spinning Nuclear Magnetic Resonance. Johnson Matthey Technology Review, 2018, 62, 279-290.	1.0	26
26	Transalkylation of Toluene with 1,2,4-Trimethylbenzene over Large Pore Zeolites. Industrial & Engineering Chemistry Research, 2017, 56, 9799-9808.	3.7	9
27	On the enhancing effect of Ce in Pd-MOR catalysts for NOx CH4-SCR: A structure-reactivity study. Applied Catalysis B: Environmental, 2016, 195, 121-131.	20.2	39
28	Formation of Copper Nanoparticles in LTL Nanosized Zeolite: Kinetics Study. Journal of Physical Chemistry C, 2016, 120, 26300-26308.	3.1	9
29	The Role of Steric Effects and Acidity in the Direct Synthesis of <i>iso</i> â€Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem, 2016, 8, 380-389.	3.7	47
30	Effect of tapeworm parasitisation on cadmium toxicity in the bioindicator copepod, Cyclops strenuus. Ecological Indicators, 2014, 37, 21-26.	6.3	6
31	Kinetics of the Formation of 2D-Hexagonal Silica Nanostructured Materials by Nonionic Block Copolymer Templating in Solution. Journal of Physical Chemistry B, 2011, 115, 11330-11344.	2.6	64
32	Structure of Micelles of a Nonionic Block Copolymer Determined by SANS and SAXS. Journal of Physical Chemistry B, 2011, 115, 11318-11329.	2.6	122
33	Initial stages of SBA-15 synthesis: An overview. Advances in Colloid and Interface Science, 2008, 142, 67-74.	14.7	75
34	Classification and individualisation of black ballpoint pen inks using principal component analysis of UV–vis absorption spectra. Forensic Science International, 2008, 174, 16-25.	2.2	86
35	SANS study of the mechanisms and kinetics of the synthesis of mesoporous materials from micelles of tri-block copolymers. Studies in Surface Science and Catalysis, 2008, , 805-810.	1.5	6
36	New insights into the initial steps of the formation of SBA-15 materials: an in situ small angle neutron scattering investigation. Chemical Communications, 2007, , 834-836.	4.1	39

#	Article	IF	CITATIONS
37	Functionalized zeolite A–nafion composite membranes for direct methanol fuel cells. Solid State Ionics, 2007, 178, 1248-1255.	2.7	90
38	Mesoporous ZSM-5 catalysts: Preparation, characterisation and catalytic properties. Part I: Comparison of different synthesis routes. Microporous and Mesoporous Materials, 2006, 89, 78-87.	4.4	57
39	Impact of aqueous impregnation on the long-range ordering and mesoporous structure of cobalt containing MCM-41 and SBA-15 materials. Microporous and Mesoporous Materials, 2005, 79, 29-39.	4.4	114
40	Characterization of the Initial Stages of SBA-15 Synthesis by in Situ Time-Resolved Small-Angle X-ray Scattering. Journal of Physical Chemistry B, 2005, 109, 22780-22790.	2.6	87
41	The dynamic desorption of krypton from the zeolite chabazite. Chemical Communications, 2004, , 2796.	4.1	0
42	Effects of CaCl2 and MgCl2 on Fourier Transform Infrared Spectra of Lung Cancer Cells. Applied Spectroscopy, 2004, 58, 61-67.	2.2	10
43	Modelling mesoporous materials with analytical functions. Studies in Surface Science and Catalysis, 2004, 154, 1448-1455.	1.5	1
44	Zeolite-Based Catalysts for Microwave-Induced Transformations of Hydrocarbons. Catalysis Letters, 2003, 89, 35-40.	2.6	9
45	Synchrotron X-ray diffraction–diffusion studies of the preparation of SBA-15 materials. Microporous and Mesoporous Materials, 2003, 66, 297-302.	4.4	29
46	Photooxidation and dark thermal oxidation of 1-butene on cationic forms of zeolite Y: a spectroscopic study. Physical Chemistry Chemical Physics, 2003, 5, 2699.	2.8	8
47	Support mesoporosity: a tool for better control of catalytic behavior of cobalt supported Fischer Tropsch catalysts. Studies in Surface Science and Catalysis, 2002, 144, 609-616.	1.5	56
48	Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-Supported Mesoporous Silicas. Journal of Catalysis, 2002, 206, 230-241.	6.2	462
49	Acid sites in mesoporous materials: a DRIFTS study. Microporous and Mesoporous Materials, 2001, 44-45, 793-799.	4.4	31
50	On the Structural, Acidic and Catalytic Properties of Zeolite SUZ-4. Journal of Physical Chemistry B, 1999, 103, 197-202.	2.6	30
51	Structural transitions in zeolite P An in situ FTIR study. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1779-1781.	1.7	14
52	In situ FTIR study of the formation of MCM-41. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2025-2032.	1.7	90
53	Ferrierite and SUZ-4 Zeolite:Â Characterization of Acid Sites. Journal of Physical Chemistry B, 1998, 102, 2715-2721.	2.6	70
54	Pt/zeolite catalysts for hydrocracking: A comparative study on FAU and EMT. Studies in Surface Science and Catalysis, 1997, 105, 917-924.	1.5	3

#	ARTICLE	IF	CITATIONS
55	Broensted acidity in zeolites. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 1673-1678.	0.4	2
56	Synthesis of MCM-41 materials: an in situ FTIR study. Microporous Materials, 1997, 11, 83-86.	1.6	65
57	TGA-DTA study on calcination of zeolitic catalysts. Thermochimica Acta, 1997, 294, 39-44.	2.7	14
58	FTIR study of the acidic properties of substituted aluminophosphates. Studies in Surface Science and Catalysis, 1995, 97, 359-366.	1.5	5
59	Out-of-plane bending vibrations of bridging OH groups in zeolites: A new characteristic of the geometry and acidity of a broensted site. Studies in Surface Science and Catalysis, 1995, 97, 63-70.	1.5	6
60	FAU and EMT zeolite catalysts: Effect of structure and acidity oncatalytic performance. Studies in Surface Science and Catalysis, 1995, 94, 560-567.	1.5	4
61	BrÃ,nsted acid sites in zeolites. FTIR study of molecular hydrogen as a probe for acidity testing. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1047-1054.	1.7	56
62	Identification of isolated Pt atoms in H-mordenite. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 233.	1.7	85
63	Genesis of RhonClusters in Zeolite Y; Interaction with Zeolite "Protons― Studies in Surface Science and Catalysis, 1994, 84, 893-900.	1.5	18
64	Spontaneous formation of Fe(CO)5 from CO and the steel walls of an FTIR cell. Journal of Molecular Catalysis, 1993, 83, 391-395.	1.2	8
65	Preparation of Phenol over Dehydroxylated HZSM-5 Zeolites. Mendeleev Communications, 1993, 3, 28-29.	1.6	18
66	N2O Decomposition over Dehydroxylated HZSM-5 Zeolites. Mendeleev Communications, 1993, 3, 67-68.	1.6	8
67	Inhomogeneity of Broensted acid sites in H-mordenite. The Journal of Physical Chemistry, 1993, 97, 5962-5964.	2.9	124
68	On the nature of the sites responsible for the enhancement of the cracking activity of HZSM-5 zeolites dealuminated under mild steaming conditions: Part 2. Zeolites, 1991, 11, 132-134.	0.5	49
69	On the possible nature of sites responsible for the enhancement of cracking activity of HZSM-5 zeolites dealuminated under mild steaming conditions. Zeolites, 1990, 10, 304-306.	0.5	57
70	Study of different states of nonframework aluminum in hydrothermally dealuminated HZSM-5 zeolites using diffuse reflectance i.r. spectroscopy. Zeolites, 1990, 10, 266-271.	0.5	143
71	A new type of acidic hydroxyl groups in ZSM-5 zeolite and in mordenite according to diffuse reflectance i.r. spectroscopy. Zeolites, 1988, 8, 175-178.	0.5	104