Hideo Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5275767/publications.pdf

Version: 2024-02-01

25 papers 3,343 citations

471509 17 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

7463 citing authors

#	Article	IF	CITATIONS
1	Early-Stage Lung Adenocarcinoma MDM2 Genomic Amplification Predicts Clinical Outcome and Response to Targeted Therapy. Cancers, 2022, 14, 708.	3.7	8
2	Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression. Nature Communications, 2022, 13, 1592.	12.8	16
3	Transcriptional Circuitry of NKX2-1 and SOX1 Defines an Unrecognized Lineage Subtype of Small-Cell Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1480-1494.	5.6	4
4	Prototypical oncogene family Myc defines unappreciated distinct lineage states of small cell lung cancer. Science Advances, 2021, 7, .	10.3	40
5	Intrinsic Immunogenicity of Small Cell Lung Carcinoma Revealed by Its Cellular Plasticity. Cancer Discovery, 2021, 11, 1952-1969.	9.4	87
6	Upregulation of FGF9 in Lung Adenocarcinoma Transdifferentiation to Small Cell Lung Cancer. Cancer Research, 2021, 81, 3916-3929.	0.9	13
7	Epigenomic Profiling Discovers Trans-lineage SOX2 Partnerships Driving Tumor Heterogeneity in Lung Squamous Cell Carcinoma. Cancer Research, 2019, 79, 6084-6100.	0.9	24
8	Suppression of STING Associated with LKB1 Loss in KRAS-Driven Lung Cancer. Cancer Discovery, 2019, 9, 34-45.	9.4	310
9	Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression. Cancer Discovery, 2018, 8, 59-73.	9.4	96
10	Overcoming Resistance to Dual Innate Immune and MEK Inhibition Downstream of KRAS. Cancer Cell, 2018, 34, 439-452.e6.	16.8	55
11	Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nature Medicine, 2018, 24, 1143-1150.	30.7	212
12	Regulatory Architecture of the ${\rm L}^2{\rm T}2$ Gonadotrope Cell Underlying the Response to Gonadotropin-Releasing Hormone. Frontiers in Endocrinology, 2018, 9, 34.	3.5	15
13	Integrin alpha 11 in the regulation of the myofibroblast phenotype: implications for fibrotic diseases. Experimental and Molecular Medicine, 2017, 49, e396-e396.	7.7	61
14	H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells. Stem Cell Reports, 2016, 6, 825-833.	4.8	40
15	Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer. Cancer Discovery, 2016, 6, 1006-1021.	9.4	108
16	Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nature Genetics, 2016, 48, 176-182.	21.4	283
17	<i>Fusobacterium nucleatum </i> and T Cells in Colorectal Carcinoma. JAMA Oncology, 2015, 1, 653.	7.1	498
18	Dynamic Epigenetic Regulation by Menin During Pancreatic Islet Tumor Formation. Molecular Cancer Research, 2015, 13, 689-698.	3.4	49

#	Article	IF	CITATIONS
19	CCAAT/Enhancer Binding Protein \hat{l}^2 Is Dispensable for Development of Lung Adenocarcinoma. PLoS ONE, 2015, 10, e0120647.	2.5	6
20	Breaking Down RET Breakpoints in Lung Adenocarcinoma. Journal of Thoracic Oncology, 2014, 9, 590-592.	1.1	1
21	Loss of Lkb1 and Pten Leads to Lung Squamous Cell Carcinoma with Elevated PD-L1 Expression. Cancer Cell, 2014, 25, 590-604.	16.8	332
22	SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. Journal of Clinical Investigation, 2014, 124, 1636-1645.	8.2	151
23	Hopping between Differentiation States in Lung Adenocarcinoma. Cancer Cell, 2013, 23, 707-709.	16.8	11
24	Integrated cistromic and expression analysis of amplified <i>NKX2-1</i> in lung adenocarcinoma identifies <i>LMO3</i> as a functional transcriptional target. Genes and Development, 2013, 27, 197-210.	5.9	61
25	SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 2009, 41, 1238-1242.	21.4	862