Fang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5275667/publications.pdf

Version: 2024-02-01

257450 289244 1,807 68 24 40 h-index citations g-index papers 70 70 70 1537 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Silicon Isotope Compositions of Soil and Sediment Reference Materials Determined by MCâ€ICPâ€MS. Geostandards and Geoanalytical Research, 2022, 46, 117-127.	3.1	3
2	Determining ⁸⁸ Sr/ ⁸⁶ Sr of barite using the Na ₂ CO ₃ exchange method. Journal of Analytical Atomic Spectrometry, 2022, 37, 390-398.	3.0	2
3	A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications. Applied Geochemistry, 2022, 140, 105273.	3.0	24
4	Early Prosperity of Iron Bacteria at the End of the Paleoproterozoic Era. Geophysical Research Letters, 2022, 49, .	4.0	5
5	Machine Learning Investigation of Clinopyroxene Compositions to Evaluate and Predict Mantle Metasomatism Worldwide. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	7
6	Global earth mineral inventory: A data legacy. Geoscience Data Journal, 2021, 8, 74-89.	4.4	21
7	Equilibrium barium isotope fractionation between minerals and aqueous solution from first-principles calculations. Geochimica Et Cosmochimica Acta, 2021, 292, 64-77.	3.9	22
8	Dataset for H ₂ , CH ₄ and organic compounds formation during experimental serpentinization. Geoscience Data Journal, 2021, 8, 90-100.	4.4	4
9	Barium isotope evidence for crystal-melt separation in granitic magma reservoirs. Geochimica Et Cosmochimica Acta, 2021, 292, 115-129.	3.9	32
10	Data Life Cycle. Encyclopedia of Earth Sciences Series, 2021, , 1-4.	0.1	0
11	Understanding the Bioaccumulation of Mercury in Rice Plants at the Wanshan Mercury Mine, China: Using Stable Mercury Isotopes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006103.	3.0	2
12	Dramatic changes in the carbonate-hosted barium isotopic compositions in the Ediacaran Yangtze Platform. Geochimica Et Cosmochimica Acta, 2021, 299, 113-129.	3.9	13
13	Calcium isotope compositions of arc magmas: Implications for Ca and carbonate recycling in subduction zones. Geochimica Et Cosmochimica Acta, 2021, 306, 1-19.	3.9	14
14	Fe and O isotopes in coesite-bearing jadeite quartzite from the Western Alps record multistage fluid-rock interactions in a continental subduction zone. Geochimica Et Cosmochimica Acta, 2021, 312, 1-24.	3.9	15
15	Sulfur isotopic signature of Earth established by planetesimal volatile evaporation. Nature Geoscience, 2021, 14, 806-811.	12.9	10
16	High precision Rb isotope measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2021, 36, 2744-2755.	3.0	9
17	Barium isotopic composition of the mantle: Constraints from carbonatites. Geochimica Et Cosmochimica Acta, 2020, 278, 235-243.	3.9	28
18	The behavior of Fe and S isotopes in porphyry copper systems: Constraints from the Tongshankou Cu-Mo deposit, Eastern China. Geochimica Et Cosmochimica Acta, 2020, 270, 61-83.	3.9	25

#	Article	IF	CITATIONS
19	Tracing subduction zone fluids with distinct Mg isotope compositions: Insights from high-pressure metasomatic rocks (leucophyllites) from the Eastern Alps. Geochimica Et Cosmochimica Acta, 2020, 271, 154-178.	3.9	23
20	Vanadium isotope fractionation during differentiation of Kilauea Iki lava lake, Hawaii. Geochimica Et Cosmochimica Acta, 2020, 289, 114-129.	3.9	10
21	Mg, C and O isotopic compositions of Late Cretaceous lacustrine dolomite and travertine in the northern Tianshan Mountains, Northwest China. Chemical Geology, 2020, 541, 119569.	3.3	9
22	Rapid determination of Ba isotope compositions for barites using a H ₂ O-extraction method and MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2020, 35, 1566-1573.	3.0	10
23	Mixing of carbonatitic into saline fluid during panda diamond formation. Geochimica Et Cosmochimica Acta, 2020, 284, 1-20.	3.9	4
24	A Review of H2, CH4, and Hydrocarbon Formation in Experimental Serpentinization Using Network Analysis. Frontiers in Earth Science, 2020, 8, .	1.8	24
25	Biogeochemical cycle of chromium isotopes at the modern Earth's surface and its applications as a paleo-environment proxy. Chemical Geology, 2020, 541, 119570.	3.3	46
26	Significant $\hat{I}'44/40$ Ca variations between carbonate- and clay-rich marine sediments from the Lesser Antilles forearc and implications for mantle heterogeneity. Geochimica Et Cosmochimica Acta, 2020, 276, 239-257.	3.9	13
27	Silicon isotopic fractionation during metamorphic fluid activities: constraints from eclogites and ultrahigh-pressure veins in the Dabie orogen, China. Chemical Geology, 2020, 540, 119550.	3.3	8
28	Cycling phosphorus on the Archean Earth: Part I. Continental weathering and riverine transport of phosphorus. Geochimica Et Cosmochimica Acta, 2020, 273, 70-84.	3.9	36
29	Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications, 2020, 11, 514.	12.8	69
30	Cycling phosphorus on the Archean Earth: Part II. Phosphorus limitation on primary production in Archean ecosystems. Geochimica Et Cosmochimica Acta, 2020, 280, 360-377.	3.9	39
31	Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China. Geochimica Et Cosmochimica Acta, 2019, 261, 327-341.	3.9	11
32	Fe isotopic composition of the Quaternary Red Clay in subtropical Southeast China: Redoxic Fe mobility and its paleoenvironmental implications. Chemical Geology, 2019, 524, 356-367.	3.3	7
33	Metasomatism of the crust-mantle boundary by melts derived from subducted sedimentary carbonates and silicates. Geochimica Et Cosmochimica Acta, 2019, 260, 311-328.	3.9	20
34	Silicon isotope compositions of metaperidotites from the Franciscan Complex of California-implications for Si isotope fractionation during subduction dehydration. Lithos, 2019, 350-351, 105228.	1.4	2
35	Geochemical evidence from coesite-bearing jadeite quartzites for large-scale flow of metamorphic fluids in a continental subduction channel. Geochimica Et Cosmochimica Acta, 2019, 265, 354-370.	3.9	10
36	Vanadium isotopic fractionation during the formation of marine ferromanganese crusts and nodules. Geochimica Et Cosmochimica Acta, 2019, 265, 371-385.	3.9	16

#	Article	IF	CITATIONS
37	Ultra-high precision silicon isotope micro-analysis using a Cameca IMS-1280 SIMS instrument by eliminating the topography effect. Journal of Analytical Atomic Spectrometry, 2019, 34, 906-914.	3.0	17
38	First-principles calculations of equilibrium Ca isotope fractionation: Implications for oldhamite formation and evolution of lunar magma ocean. Earth and Planetary Science Letters, 2019, 510, 153-160.	4.4	64
39	Barium isotopic fractionation in latosol developed from strongly weathered basalt. Science of the Total Environment, 2019, 687, 1295-1304.	8.0	43
40	Vanadium isotope composition of the Bulk Silicate Earth: Constraints from peridotites and komatiites. Geochimica Et Cosmochimica Acta, 2019, 259, 288-301.	3.9	13
41	Calcium isotope sources and fractionation during melt-rock interaction in the lithospheric mantle: Evidence from pyroxenites, wehrlites, and eclogites. Chemical Geology, 2019, 524, 272-282.	3.3	30
42	Determining Ba isotopes of barite using the Na ₂ CO ₃ exchange reaction and double-spike method by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2019, 34, 1459-1467.	3.0	20
43	Extended Deep Earth Water Model for predicting major element mantle metasomatism. Geochimica Et Cosmochimica Acta, 2019, 254, 192-230.	3.9	72
44	Mantle Zn Isotopic Heterogeneity Caused by Meltâ€Rock Reaction: Evidence From Feâ€Rich Peridotites and Pyroxenites From the Bohemian Massif, Central Europe. Journal of Geophysical Research: Solid Earth, 2019, 124, 3588-3604.	3.4	18
45	Equilibrium Mg isotope fractionation among aqueous Mg2+, carbonates, brucite and lizardite: Insights from first-principles molecular dynamics simulations. Geochimica Et Cosmochimica Acta, 2019, 250, 117-129.	3.9	40
46	Dehydration of Glaucophane in the System Na2Oâ€"MgOâ€"Al2O3â€"SiO2â€"H2O and the Effects of NaCl-, CO2- and Silicate-bearing Aqueous Fluids. Journal of Petrology, 2019, 60, 2369-2386.	2.8	4
47	Calcium isotopic signatures of carbonatite and silicate metasomatism, melt percolation and crustal recycling in the lithospheric mantle. Geochimica Et Cosmochimica Acta, 2019, 248, 1-13.	3.9	57
48	Annually-resolved coral skeletal δ138/134Ba records: A new proxy for oceanic Ba cycling. Geochimica Et Cosmochimica Acta, 2019, 247, 27-39.	3.9	30
49	Strontium isotopic evidence for the provenance of occupants and subsistence of Sarakenos Cave in prehistoric Greece. Quaternary International, 2019, 508, 13-22.	1.5	5
50	Iron Isotope Systematics of the Panzhihua Mafic Layered Intrusion Associated With Giant Feâ€fi Oxide Deposit in the Emeishan Large Igneous Province, SW China. Journal of Geophysical Research: Solid Earth, 2019, 124, 358-375.	3.4	29
51	Data Processing. , 2019, , 1-4.		4
52	Data Cleansing. , 2019, , 1-4.		1
53	CHARACTERIZING CARBON MINERALOGY AND FORMATIONAL ENVIRONMENTS THROUGH DEEP TIME WITH ADVANCED ANALYTICS AND VISUALIZATION. , 2019, , .		0
54	Cr isotopic composition of the Laobao cherts during the Ediacaran–Cambrian transition in South China. Chemical Geology, 2018, 482, 121-130.	3.3	24

#	Article	IF	CITATION
55	Vanadium isotope compositions of mid-ocean ridge lavas and altered oceanic crust. Earth and Planetary Science Letters, 2018, 493, 128-139.	4.4	24
56	Magnesium Isotope Composition of Subduction Zone Fluids as Constrained by Jadeitites From Myanmar. Journal of Geophysical Research: Solid Earth, 2018, 123, 7566-7585.	3.4	19
57	First Identification of Mafic Igneous Enclaves in Miocene Lavas of Southern Tibet With Implications for Indian Continental Subduction. Geophysical Research Letters, 2018, 45, 8205-8213.	4.0	17
58	Calibrating NIST SRM 683 as a new international reference standard for Zn isotopes. Journal of Analytical Atomic Spectrometry, 2018, 33, 1777-1783.	3.0	26
59	Immiscible hydrocarbon fluids in the deep carbon cycle. Nature Communications, 2017, 8, 15798.	12.8	40
60	Why was iron lost without significant isotope fractionation during the lateritic process in tropical environments?. Geoderma, 2017, 290, 1-9.	5.1	24
61	Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth. Earth and Planetary Science Letters, 2017, 474, 128-137.	4.4	98
62	U-series disequilibria in subduction zone lavas: Inherited from subducted slabs or produced by mantle in-growth melting?. Chemical Geology, 2016, 440, 179-190.	3.3	8
63	Calcium isotopic composition of mantle xenoliths and minerals from Eastern China. Geochimica Et Cosmochimica Acta, 2016, 174, 335-344.	3.9	59
64	Vanadium isotope measurement by MC-ICP-MS. Chemical Geology, 2016, 421, 17-25.	3.3	52
65	Diamond formation due to a pH drop during fluid–rock interactions. Nature Communications, 2015, 6, 8702.	12.8	76
66	High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS. Chemical Geology, 2014, 390, 9-21.	3.3	144
67	Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nature Geoscience, 2014, 7, 909-913.	12.9	132
68	Mobility of chromium in high temperature crustal and upper mantle fluids. Geochemical Perspectives Letters. 0. 12. 1-6.	5.0	23