Juliana Ferreira de Brito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5274342/publications.pdf

Version: 2024-02-01

30 1,143 papers citations

471509 17 h-index 28 g-index

30 all docs

30 docs citations

30 times ranked 1354 citing authors

#	Article	IF	Citations
1	Advances in photoelectroreduction of CO2 to hydrocarbons fuels: Contributions of functional materials. Journal of CO2 Utilization, 2022, 55, 101810.	6.8	15
2	The Substrate Morphology Effect for Sulfur-Rich Amorphous Molybdenum Sulfide for Electrochemical Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 026519.	2.9	5
3	All-solution processed CuGaS2-based photoelectrodes for CO2 reduction. Journal of CO2 Utilization, 2022, 57, 101902.	6.8	8
4	Ammonia production from nitrogen under simulated solar irradiation, low overpotential, and mild conditions. Electrochimica Acta, 2022, 421, 140475.	5.2	3
5	Current trending and beyond for solar-driven water splitting reaction on WO3 photoanodes. Journal of Energy Chemistry, 2022, 73, 88-113.	12.9	35
6	The influence of metallic Bi in BiVO4 semiconductor for artificial photosynthesis. Journal of Alloys and Compounds, 2021, 851, 156912.	5 . 5	19
7	Enhancement of photocurrent response for self-ordered Nb2O5 nanotubes synthesized at room temperature. Journal of Materials Science, 2021, 56, 2088-2102.	3.7	4
8	Photoelectrodeposition of Pt nanoparticles on Sb2Se3 photocathodes for enhanced water splitting. Electrochimica Acta, 2021, 382, 138290.	5.2	11
9	Reduction of CO2 by photoelectrochemical process using nonâ€oxide twoâ€dimensional nanomaterials â€∙a review. ChemElectroChem, 2021, 8, 4305.	3.4	8
10	Artificial photosynthesis for alcohol and 3-C compound formation using BiVO4-lamelar catalyst. Journal of CO2 Utilization, 2020, 36, 187-195.	6.8	16
11	Contribution of CuxO distribution, shape and ratio on TiO2 nanotubes to improve methanol production from CO2 photoelectroreduction. Journal of Solid State Electrochemistry, 2020, 24, 3013-3028.	2.5	17
12	The great performance of TiO2 nanotubes electrodes modified by copper(II)porphyrin in the reduction of carbon dioxide to alcohol. Journal of CO2 Utilization, 2020, 41, 101261.	6.8	22
13	Photoelectrodes of Cu2O with interfacial structure of topological insulator Bi2Se3 contributes to selective photoelectrocatalytic reduction of CO2 towards methanol. Journal of CO2 Utilization, 2020, 39, 101154.	6.8	23
14	O emprego da eletroquÃmica na transformação da biomassa em produtos de alto valor agregado. , 2020, , 253-274.		0
15	CO ₂ Reduction of Hybrid Cu ₂ O–Cu/Gas Diffusion Layer Electrodes and their Integration in a Cuâ€based Photoelectrocatalytic Cell. ChemSusChem, 2019, 12, 4274-4284.	6.8	39
16	Turning carbon dioxide into fuel concomitantly to the photoanode-driven process of organic pollutant degradation by photoelectrocatalysis. Electrochimica Acta, 2019, 306, 277-284.	5.2	21
17	Combination of Photoelectrocatalysis and Ozonation as a Good Strategy for Organics Oxidation and Decreased Toxicity in Oil-Produced Water. Journal of the Electrochemical Society, 2019, 166, H3231-H3238.	2.9	23
18	Photoelectrocatalytic performance of nanostructured p-n junction NtTiO2/NsCuO electrode in the selective conversion of CO2 to methanol at low bias potentials. Journal of CO2 Utilization, 2018, 24, 81-88.	6.8	42

#	Article	IF	CITATIONS
19	Role of CuO in the modification of the photocatalytic water splitting behavior of TiO2 nanotube thin films. Applied Catalysis B: Environmental, 2018, 224, 136-145.	20.2	149
20	MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Applied Catalysis B: Environmental, 2018, 225, 563-573.	20.2	157
21	Contribution of thin films of ZrO2 on TiO2 nanotubes electrodes applied in the photoelectrocatalytic CO2 conversion. Journal of CO2 Utilization, 2018, 25, 254-263.	6.8	29
22	An Artificial Photosynthesis System Based on Ti/TiO2 Coated with Cu(II) Aspirinate Complex for CO2 Reduction to Methanol. Electrocatalysis, 2017, 8, 279-287.	3.0	20
23	On the application of Ti/TiO 2 /CuO n-p junction semiconductor: A case study of electrolyte, temperature and potential influence on CO 2 reduction. Chemical Engineering Journal, 2017, 318, 264-271.	12.7	67
24	Electrochemistry: A Powerful Tool for Preparation of Semiconductor Materials for Decontamination of Organic and Inorganic Pollutants, Disinfection, and CO 2 Reduction., 2017,, 239-269.		1
25	Appraisal of photoelectrocatalytic oxidation of glucose and production of high value chemicals on nanotube Ti/TiO2 electrode. Electrochimica Acta, 2016, 222, 123-132.	5.2	16
26	Achievements and Trends in Photoelectrocatalysis: from Environmental to Energy Applications. Electrocatalysis, 2015, 6, 415-441.	3.0	201
27	A New Si/TiO2/Pt p-n Junction Semiconductor to Demonstrate Photoelectrochemical CO2 Conversion. Electrochimica Acta, 2015, 185, 117-124.	5.2	49
28	Photoelectrochemical reduction of CO2 on Cu/Cu2O films: Product distribution and pH effects. Chemical Engineering Journal, 2015, 264, 302-309.	12.7	114
29	Tratamento da água de purificação do biodiesel utilizando eletrofloculação. Quimica Nova, 2012, 35, 728-732.	0.3	11
30	Adsorption of Aromatic Compounds Under Magnetic Field Influence. Water, Air, and Soil Pollution, 2012, 223, 3545-3551.	2.4	18