Heinrich Jasper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5274196/publications.pdf

Version: 2024-02-01

89 papers 8,470 citations

44069 48 h-index 51608 86 g-index

96 all docs 96 docs citations

96 times ranked 8647 citing authors

#	Article	IF	CITATIONS
1	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	12.6	295
2	In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nature Aging, 2022, 2, 243-253.	11.6	101
3	Exploring Human Skin Aging at the Single-Cell Level. Developmental Cell, 2021, 56, 253-254.	7.0	2
4	Age-related changes in polycomb gene regulation disrupt lineage fidelity in intestinal stem cells. ELife, 2021, 10, .	6.0	20
5	Reactive Oxygen Species in intestinal stem cell metabolism, fate and function. Free Radical Biology and Medicine, 2021, 166, 140-146.	2.9	25
6	Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature, 2021, 596, 97-102.	27.8	25
7	Host autophagy mediates organ wasting and nutrient mobilization for tumor growth. EMBO Journal, 2021, 40, e107336.	7.8	25
8	Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biology, 2021, 45, 102049.	9.0	122
9	Dpp/TGF \hat{l}^2 -superfamily play a dual conserved role in mediating the damage response in the retina. PLoS ONE, 2021, 16, e0258872.	2.5	0
10	Non-canonical Wnt signaling promotes directed migration of intestinal stem cells to sites of injury. Nature Communications, 2021, 12, 7150.	12.8	25
11	Intestinal Stem Cell Aging: Origins and Interventions. Annual Review of Physiology, 2020, 82, 203-226.	13.1	100
12	Adult stem cells and regenerative medicineâ€"a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 27-36.	3.8	43
13	Warburg-like Metabolic Reprogramming in Aging Intestinal Stem Cells Contributes to Tissue Hyperplasia. Cell Reports, 2020, 33, 108423.	6.4	36
14	Hallmarks of aging Drosophila intestinal stem cells. Mechanisms of Ageing and Development, 2020, 190, 111285.	4.6	25
15	MANF delivery improves retinal homeostasis and cell replacement therapies in ageing mice. Experimental Gerontology, 2020, 134, 110893.	2.8	12
16	Cohesin controls intestinal stem cell identity by maintaining association of Escargot with target promoters. ELife, 2020, 9, .	6.0	16
17	AWD regulates timed activation of BMP signaling in intestinal stem cells to maintain tissue homeostasis. Nature Communications, 2019, 10, 2988.	12.8	21
18	Control of Intestinal Cell Fate by Dynamic Mitotic Spindle Repositioning Influences Epithelial Homeostasis and Longevity. Cell Reports, 2019, 28, 2807-2823.e5.	6.4	40

#	Article	IF	CITATIONS
19	The WT1-like transcription factor Klumpfuss maintains lineage commitment of enterocyte progenitors in the Drosophila intestine. Nature Communications, 2019, 10, 4123.	12.8	33
20	Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction. Nature Communications, 2019, 10, 1050.	12.8	39
21	JNK modifies neuronal metabolism to promote proteostasis and longevity. Aging Cell, 2019, 18, e12849.	6.7	18
22	RALying Regeneration through Wnt Internalization in Stem Cells. Cell Stem Cell, 2019, 24, 499-500.	11.1	1
23	NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nature Communications, 2019, 10, 5284.	12.8	165
24	MANF regulates metabolic and immune homeostasis in ageing and protects against liver damage. Nature Metabolism, 2019, 1, 276-290.	11.9	89
25	Trophic Factors in Inflammation and Regeneration: The Role of MANF and CDNF. Frontiers in Physiology, 2018, 9, 1629.	2.8	31
26	Anatomy and Physiology of the Digestive Tract of <i>Drosophila melanogaster</i> . Genetics, 2018, 210, 357-396.	2.9	304
27	Mutations of mitochondrial DNA are not major contributors to aging of fruit flies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9620-E9629.	7.1	32
28	Dietary restriction improves intestinal cellular fitness to enhance gut barrier function and lifespan in D. melanogaster. PLoS Genetics, 2018, 14, e1007777.	3.5	47
29	Rejuvenating Strategies for Stem Cell-Based Therapies in Aging. Cell Stem Cell, 2017, 20, 161-175.	11.1	129
30	Epithelia: Understanding the Cell Biology of Intestinal Barrier Dysfunction. Current Biology, 2017, 27, R185-R187.	3.9	12
31	Tis11 mediated mRNA decay promotes the reacquisition of Drosophila intestinal stem cell quiescence. Developmental Biology, 2017, 426, 8-16.	2.0	12
32	Piwi Is Required to Limit Exhaustion of Aging Somatic Stem Cells. Cell Reports, 2017, 20, 2527-2537.	6.4	70
33	mTORC1 Activation during Repeated Regeneration Impairs Somatic Stem Cell Maintenance. Cell Stem Cell, 2017, 21, 806-818.e5.	11.1	87
34	PGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila. ELife, 2017, 6, .	6.0	46
35	You Are What You Eat: Linking High-Fat Diet to Stem Cell Dysfunction and Tumorigenesis. Cell Stem Cell, 2016, 18, 564-566.	11.1	6
36	Gastrointestinal stem cells in health and disease: from flies to humans. DMM Disease Models and Mechanisms, 2016, 9, 487-99.	2.4	101

#	Article	IF	Citations
37	Ubx dynamically regulates Dpp signaling by repressing Dad expression during copper cell regeneration in the adult Drosophila midgut. Developmental Biology, 2016, 419, 373-381.	2.0	10
38	Suppressors of Superoxide-H 2 O 2 Production at Site I Q of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury. Cell Metabolism, 2016, 24, 582-592.	16.2	162
39	Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nature Cell Biology, 2016, 18, 823-832.	10.3	238
40	Sexual Dimorphism: How Female Cells Win the Race. Current Biology, 2016, 26, R212-R215.	3.9	9
41	Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science, 2016, 353, aaf3646.	12.6	191
42	Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan. Cell Host and Microbe, 2016, 19, 240-253.	11.0	191
43	Control of apoptosis by Drosophila DCAF12. Developmental Biology, 2016, 413, 50-59.	2.0	18
44	Aging-Induced Stem Cell Mutations as Drivers for Disease and Cancer. Cell Stem Cell, 2015, 16, 601-612.	11.1	149
45	Haemocytes control stem cell activity in the DrosophilaÂintestine. Nature Cell Biology, 2015, 17, 736-748.	10.3	127
46	Exploring the physiology and pathology of aging in the intestine of <i>Drosophila melanogaster </i> Invertebrate Reproduction and Development, 2015, 59, 51-58.	0.8	33
47	Of Flies, Mice, and Men: Evolutionarily Conserved Tissue Damage Responses and Aging. Developmental Cell, 2015, 32, 9-18.	7.0	81
48	PERK Limits Drosophila Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress. PLoS Genetics, 2015, 11, e1005220.	3.5	86
49	Signal integration by Ca2+ regulates intestinal stem-cell activity. Nature, 2015, 528, 212-217.	27.8	132
50	Epithelial regeneration and cancer: news from the Src front. EMBO Journal, 2014, 33, 1423-1424.	7.8	3
51	Control of metabolic adaptation to fasting by dlLP6-induced insulin signaling in <i>Drosophila</i> oenocytes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17959-17964.	7.1	75
52	Integration of UPRER and Oxidative Stress Signaling in the Control of Intestinal Stem Cell Proliferation. PLoS Genetics, 2014, 10, e1004568.	3 . 5	100
53	Promoting longevity by maintaining metabolic and proliferative homeostasis. Journal of Experimental Biology, 2014, 217, 109-118.	1.7	85
54	PGRP-SC2 Promotes Gut Immune Homeostasis to Limit Commensal Dysbiosis and Extend Lifespan. Cell, 2014, 156, 109-122.	28.9	374

#	Article	IF	Citations
55	Slit/Robo Signaling Regulates Cell Fate Decisions in the Intestinal Stem Cell Lineage of Drosophila. Cell Reports, 2014, 7, 1867-1875.	6.4	152
56	Mitochondrial Proteostasis in the Control of Aging and Longevity. Cell Metabolism, 2014, 20, 214-225.	16.2	126
57	Aging: Seeking Mitonuclear Balance. Cell, 2013, 154, 271-273.	28.9	11
58	Longevity focuses on NAD+. Nature Chemical Biology, 2013, 9, 666-667.	8.0	10
59	Misregulation of an Adaptive Metabolic Response Contributes to the Age-Related Disruption of Lipid Homeostasis in Drosophila. Cell Reports, 2013, 4, 1250-1261.	6.4	61
60	Dpp Signaling Determines Regional Stem Cell Identity in the Regenerating Adult Drosophila Gastrointestinal Tract. Cell Reports, 2013, 4, 10-18.	6.4	64
61	Intestinal inflammation and stem cell homeostasis in aging Drosophila melanogaster. Frontiers in Cellular and Infection Microbiology, 2013, 3, 98.	3.9	69
62	Notch-Mediated Suppression of TSC2 Expression Regulates Cell Differentiation in the Drosophila Intestinal Stem Cell Lineage. PLoS Genetics, 2012, 8, e1003045.	3.5	88
63	Niche science. Cell Cycle, 2012, 11, 2959-2960.	2.6	19
64	Schnurri regulates hemocyte function to promote tissue recovery after DNA damage. Journal of Cell Science, 2012, 125, 1393-400.	2.0	21
65	EGF signaling regulates the proliferation of intestinal stem cells in <i>Drosophila</i> . Development (Cambridge), 2011, 138, 1045-1055.	2.5	257
66	Metabolic Homeostasis: HDACs Take Center Stage. Cell, 2011, 145, 497-499.	28.9	25
67	Peroxiredoxin Stabilization of DE-Cadherin Promotes Primordial Germ Cell Adhesion. Developmental Cell, 2011, 20, 233-243.	7.0	46
68	Dynamic Coordination of Innate Immune Signaling and Insulin Signaling Regulates Systemic Responses to Localized DNA Damage. Developmental Cell, 2011, 20, 841-854.	7.0	85
69	Redox Regulation by Keap1 and Nrf2 Controls Intestinal Stem Cell Proliferation in Drosophila. Cell Stem Cell, 2011, 8, 188-199.	11.1	306
70	Maintaining Tissue Homeostasis: Dynamic Control of Somatic Stem Cell Activity. Cell Stem Cell, 2011, 9, 402-411.	11.1	270
71	Regulation of Drosophila lifespan by JNK signaling. Experimental Gerontology, 2011, 46, 349-354.	2.8	104
72	Lifespan Extension by Preserving Proliferative Homeostasis in Drosophila. PLoS Genetics, 2010, 6, e1001159.	3.5	303

#	Article	IF	CITATIONS
73	Metabolic Regulation of Stem Cell Behavior and Implications for Aging. Cell Metabolism, 2010, 12, 561-565.	16.2	51
74	Control of Metabolic Homeostasis by Stress Signaling Is Mediated by the Lipocalin NLaz. PLoS Genetics, 2009, 5, e1000460.	3.5	110
75	JNK signaling in insulinâ€producing cells is required for adaptive responses to stress in <i>Drosophila</i> . Aging Cell, 2009, 8, 288-295.	6.7	64
76	Insulin and JNK: optimizing metabolic homeostasis and lifespan. Trends in Endocrinology and Metabolism, 2009, 20, 100-106.	7.1	71
77	It's all about balance: p53 and aging. Aging, 2009, 1, 884-886.	3.1	9
78	14â€3â€3É> antagonizes FoxO to control growth, apoptosis and longevity in <i>Drosophila</i> . Aging Cell, 2008, 7, 688-699.	6.7	88
79	JNK Activity in Somatic Stem Cells Causes Loss of Tissue Homeostasis in the Aging Drosophila Gut. Cell Stem Cell, 2008, 3, 442-455.	11.1	500
80	SKNy Worms and Long Life. Cell, 2008, 132, 915-916.	28.9	18
81	Foxo and Fos regulate the decision between cell death and survival in response to UV irradiation. EMBO Journal, 2007, 26, 380-390.	7.8	118
82	Migration in Action: Profiling Border Cells. Developmental Cell, 2006, 10, 414-415.	7.0	0
83	Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13123-13128.	7.1	130
84	DREF Is Required for Efficient Growth and Cell Cycle Progression in Drosophila Imaginal Discs. Molecular and Cellular Biology, 2005, 25, 5590-5598.	2.3	41
85	JNK Extends Life Span and Limits Growth by Antagonizing Cellular and Organism-Wide Responses to Insulin Signaling. Cell, 2005, 121, 115-125.	28.9	481
86	JNK Signaling Confers Tolerance to Oxidative Stress and Extends Lifespan in Drosophila. Developmental Cell, 2003, 5, 811-816.	7.0	373
87	Drosophila Innate Immunity. Molecular Cell, 2002, 10, 967-969.	9.7	8
88	A Genomic Switch at the Transition from Cell Proliferation to Terminal Differentiation in the Drosophila Eye. Developmental Cell, 2002, 3, 511-521.	7.0	67
89	The Genomic Response of the Drosophila Embryo to JNK Signaling. Developmental Cell, 2001, 1, 579-586.	7.0	104