Edward J Rebar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5274058/publications.pdf

Version: 2024-02-01

201385 454577 13,020 31 27 30 citations h-index g-index papers 31 31 31 12231 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nature Biotechnology, 2019, 37, 945-952.	9.4	39
2	Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nature Communications, 2019, 10, 1133.	5.8	79
3	Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nature Medicine, 2018, 24, 1691-1695.	15.2	215
4	Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34 + Hematopoietic Stem and Progenitor Cells. Molecular Therapy - Methods and Clinical Development, 2017, 4, 137-148.	1.8	131
5	Genetic editing of HLA expression in hematopoietic stem cells to broaden their human application. Scientific Reports, 2016, 6, 21757.	1.6	33
6	Gene Correction of iPSCs from a Wiskott-Aldrich Syndrome Patient Normalizes the Lymphoid Developmental and Functional Defects. Stem Cell Reports, 2016, 7, 139-148.	2.3	43
7	Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing. Nature Communications, 2016, 7, 10194.	5.8	15
8	In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood, 2015, 126, 1777-1784.	0.6	256
9	Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature Methods, 2015, 12, 465-471.	9.0	91
10	Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma. Molecular Therapy, 2015, 23, 1380-1390.	3.7	88
11	Functional footprinting of regulatory DNA. Nature Methods, 2015, 12, 927-930.	9.0	123
12	A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood, 2012, 119, 5697-5705.	0.6	437
13	In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature, 2011, 475, 217-221.	13.7	523
14	Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations. Cell, 2011, 146, 318-331.	13.5	703
15	Targeted Genome Editing Across Species Using ZFNs and TALENs. Science, 2011, 333, 307-307.	6.0	556
16	A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29, 143-148.	9.4	1,855
17	Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 2010, 11, 636-646.	7.7	1,863
18	Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459, 437-441.	13.7	862

#	Article	IF	CITATIONS
19	Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 2009, 27, 851-857.	9.4	990
20	Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26, 702-708.	9.4	842
21	Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 2008, 26, 808-816.	9.4	916
22	An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 2007, 25, 778-785.	9.4	967
23	Development of pro-angiogenic engineered transcription factors for the treatment of cardiovascular disease. Expert Opinion on Investigational Drugs, 2004, 13, 829-839.	1.9	23
24	Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Research, 2003, 63, 8968-76.	0.4	60
25	Activation of Vascular Endothelial Growth Factor A Transcription in Tumorigenic Glioblastoma Cell Lines by an Enhancer with Cell Type-specific DNase I Accessibility. Journal of Biological Chemistry, 2002, 277, 20087-20094.	1.6	27
26	Induction of angiogenesis in a mouse model using engineered transcription factors. Nature Medicine, 2002, 8, 1427-1432.	15.2	241
27	PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma 2 but not PPARgamma 1 reactivates adipogenesis. Genes and Development, 2002, 16, 27-32.	2.7	315
28	Novel Approaches to Controlling Transcription. , 2002, 24, 137-178.		4
29	Regulation of an Endogenous Locus Using a Panel of Designed Zinc Finger Proteins Targeted to Accessible Chromatin Regions. Journal of Biological Chemistry, 2001, 276, 11323-11334.	1.6	216
30	[8] Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods in Enzymology, 1996, 267, 129-149.	0.4	51
31	Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science, 1994, 263, 671-673.	6.0	456