Ludvic U Zrinzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5273720/publications.pdf Version: 2024-02-01

		23567	32842
216	12,610	58	100
papers	citations	h-index	g-index
227	227	227	8024
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 2013, 74, 449-457.	5.3	1,046
2	Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Anatomy and Terminology. Stereotactic and Functional Neurosurgery, 2016, 94, 298-306.	1.5	452
3	Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. Brain, 2011, 134, 359-374.	7.6	387
4	Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. Journal of Neurosurgery, 2012, 116, 84-94.	1.6	331
5	Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging. NeuroImage, 2012, 60, 83-94.	4.2	294
6	Bilateral adaptive deep brain stimulation is effective in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 717-721.	1.9	269
7	Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease. Brain, 2016, 139, 1482-1496.	7.6	213
8	Stimulating at the right time: phase-specific deep brain stimulation. Brain, 2017, 140, 132-145.	7.6	213
9	Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1388-1389.	1.9	199
10	A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nature Communications, 2020, 11, 3364.	12.8	199
11	Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease. NeuroImage, 2017, 158, 332-345.	4.2	197
12	Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on â€effective' connectivity. Brain, 2014, 137, 1130-1144.	7.6	196
13	Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson's disease surgery. Experimental Neurology, 2006, 198, 214-221.	4.1	188
14	Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome. JAMA Neurology, 2018, 75, 353.	9.0	186
15	Movement-Related Changes in Local and Long-Range Synchronization in Parkinson's Disease Revealed by Simultaneous Magnetoencephalography and Intracranial Recordings. Journal of Neuroscience, 2012, 32, 10541-10553.	3.6	176
16	Deep brain stimulation between 1947 and 1987: the untold story. Neurosurgical Focus, 2010, 29, E1.	2.3	174
17	Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain, 2008, 131, 1588-1598.	7.6	163
18	Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson's disease. Clinical Neurophysiology, 2016, 127, 2010-2019.	1.5	159

#	Article	IF	CITATIONS
19	Bilateral globus pallidus stimulation for severe Tourette's syndrome: a double-blind, randomised crossover trial. Lancet Neurology, The, 2015, 14, 595-605.	10.2	155
20	Connectivity derived thalamic segmentation in deep brain stimulation for tremor. NeuroImage: Clinical, 2018, 18, 130-142.	2.7	154
21	A Randomized Trial Directly Comparing Ventral Capsule and Anteromedial Subthalamic Nucleus Stimulation in Obsessive-Compulsive Disorder: Clinical and Imaging Evidence for Dissociable Effects. Biological Psychiatry, 2019, 85, 726-734.	1.3	152
22	Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson's disease using an MRI-guided and MRI-verified approach. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1419-1425.	1.9	151
23	The nucleus basalis of Meynert: A new target for deep brain stimulation in dementia?. Neuroscience and Biobehavioral Reviews, 2013, 37, 2676-2688.	6.1	145
24	Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain, 2012, 135, 148-160.	7.6	141
25	Midline Frontal Cortex Low-Frequency Activity Drives Subthalamic Nucleus Oscillations during Conflict. Journal of Neuroscience, 2014, 34, 7322-7333.	3.6	133
26	Effects of contact location and voltage amplitude on speech and movement in bilateral subthalamic nucleus deep brain stimulation. Movement Disorders, 2008, 23, 2377-2383.	3.9	130
27	The Risk of Hardware Infection in Deep Brain Stimulation Surgery Is Greater at Impulse Generator Replacement than at the Primary Procedure. Stereotactic and Functional Neurosurgery, 2013, 91, 56-65.	1.5	129
28	Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients. Neurolmage, 2010, 50, 1578-1588.	4.2	123
29	Variability of the subthalamic nucleus: The case for direct MRI guided targeting. British Journal of Neurosurgery, 2007, 21, 197-200.	0.8	113
30	Modulation of Beta Bursts in the Subthalamic Nucleus Predicts Motor Performance. Journal of Neuroscience, 2018, 38, 8905-8917.	3.6	113
31	Bilateral Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson Disease Dementia. JAMA Neurology, 2018, 75, 169.	9.0	112
32	Deep brain stimulation effects in dystonia: Time course of electrophysiological changes in early treatment. Movement Disorders, 2011, 26, 1913-1921.	3.9	111
33	Future of brain stimulation: New targets, new indications, new technology. Movement Disorders, 2013, 28, 1784-1792.	3.9	111
34	Deep brain stimulation for Gilles de la Tourette syndrome: A case series targeting subregions of the globus pallidus internus. Movement Disorders, 2011, 26, 1922-1930.	3.9	103
35	Subthalamic Nucleus Local Field Potential Activity during the Eriksen Flanker Task Reveals a Novel Role for Theta Phase during Conflict Monitoring. Journal of Neuroscience, 2013, 33, 14758-14766.	3.6	99
36	Clinical Safety of Brain Magnetic Resonance Imaging with Implanted Deep Brain Stimulation Hardware: Large Case Series and Review of the Literature. World Neurosurgery, 2011, 76, 164-172.	1.3	97

#	Article	IF	CITATIONS
37	Patient-Specific Model-Based Investigation of Speech Intelligibility and Movement during Deep Brain Stimulation. Stereotactic and Functional Neurosurgery, 2010, 88, 224-233.	1.5	94
38	Parkinsonian impairment correlates with spatially extensive subthalamic oscillatory synchronization. Neuroscience, 2010, 171, 245-257.	2.3	91
39	Pallidal stimulation modifies after-effects of paired associative stimulation on motor cortex excitability in primary generalised dystonia. Experimental Neurology, 2007, 206, 80-85.	4.1	90
40	The nature of tremor circuits in parkinsonian and essential tremor. Brain, 2014, 137, 3223-3234.	7.6	90
41	A review of brain circuitries involved in stuttering. Frontiers in Human Neuroscience, 2014, 8, 884.	2.0	83
42	MRI-Guided Subthalamic Nucleus Deep Brain Stimulation without Microelectrode Recording: Can We Dispense with Surgery under Local Anaesthesia?. Stereotactic and Functional Neurosurgery, 2011, 89, 318-325.	1.5	82
43	Ventral tegmental area deep brain stimulation for refractory chronic cluster headache. Neurology, 2016, 86, 1676-1682.	1.1	82
44	High resolution MR anatomy of the subthalamic nucleus: Imaging at 9.4T with histological validation. NeuroImage, 2012, 59, 2035-2044.	4.2	81
45	Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1078-1090.	1.9	81
46	Method for patient-specific finite element modeling and simulation of deep brain stimulation. Medical and Biological Engineering and Computing, 2009, 47, 21-28.	2.8	80
47	Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation. Brain, 2013, 136, 3062-3075.	7.6	80
48	Deep brain stimulation versus anterior capsulotomy for obsessive-compulsive disorder: a review of the literature. Journal of Neurosurgery, 2015, 122, 1028-1037.	1.6	80
49	Predictive factors of speech intelligibility following subthalamic nucleus stimulation in consecutive patients with Parkinson's disease. Movement Disorders, 2014, 29, 532-538.	3.9	79
50	Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson's disease. Scientific Reports, 2017, 7, 9882.	3.3	79
51	Normative vs. patient-specific brain connectivity in deep brain stimulation. NeuroImage, 2021, 224, 117307.	4.2	79
52	Genotype and phenotype in Parkinson's disease: Lessons in heterogeneity from deep brain stimulation. Movement Disorders, 2013, 28, 1370-1375.	3.9	77
53	Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. Journal of Neurosurgery, 2009, 110, 1283-1290.	1.6	76
54	Complementary roles of different oscillatory activities in the subthalamic nucleus in coding motor effort in Parkinsonism. Experimental Neurology, 2013, 248, 187-195.	4.1	74

#	Article	IF	CITATIONS
55	Value of subthalamic nucleus local field potentials recordings in predicting stimulation parameters for deep brain stimulation in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 885-889.	1.9	72
56	Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. ELife, 2017, 6, .	6.0	71
5 7	An approach to deep brain stimulation for severe treatment-refractory Tourette syndrome: the UK perspective. British Journal of Neurosurgery, 2011, 25, 38-44.	0.8	70
58	Deep Brain Stimulation in Cluster Headache: Hypothalamus or Midbrain Tegmentum?. Current Pain and Headache Reports, 2010, 14, 151-159.	2.9	67
59	Human subthalamic nucleus–medial frontal cortex theta phase coherence is involved in conflict and error related cortical monitoring. NeuroImage, 2016, 137, 178-187.	4.2	66
60	Alternating Modulation of Subthalamic Nucleus Beta Oscillations during Stepping. Journal of Neuroscience, 2018, 38, 5111-5121.	3.6	66
61	Therapeutic Subthalamic Nucleus Deep Brain Stimulation Reverses Cortico-Thalamic Coupling during Voluntary Movements in Parkinson's Disease. PLoS ONE, 2012, 7, e50270.	2.5	66
62	Neural signatures of hyperdirect pathway activity in Parkinson's disease. Nature Communications, 2021, 12, 5185.	12.8	65
63	Deep brain stimulation in the treatment of chorea. Movement Disorders, 2012, 27, 357-363.	3.9	61
64	Human Subthalamic Nucleus in Movement Error Detection and Its Evaluation during Visuomotor Adaptation. Journal of Neuroscience, 2014, 34, 16744-16754.	3.6	61
65	Tremor Reduction by Deep Brain Stimulation Is Associated With Gamma Power Suppression in Parkinson's Disease. Neuromodulation, 2015, 18, 349-354.	0.8	60
66	Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease. Brain, 2012, 135, 2766-2778.	7.6	59
67	Pitfalls in precision stereotactic surgery. , 2012, 3, 53.		56
68	The International Deep Brain Stimulation Registry and Database for Gilles de la Tourette Syndrome: How Does It Work?. Frontiers in Neuroscience, 2016, 10, 170.	2.8	55
69	Optimal deep brain stimulation site and target connectivity for chronic cluster headache. Neurology, 2017, 89, 2083-2091.	1.1	55
70	Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging. Stereotactic and Functional Neurosurgery, 2016, 94, 307-319.	1.5	54
71	Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy?. Molecular Psychiatry, 2021, 26, 60-65.	7.9	54
72	Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation. Journal of Neuroscience Methods, 2016, 261, 29-46.	2.5	52

#	Article	IF	CITATIONS
73	Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease. Movement Disorders, 2017, 32, 1174-1182.	3.9	52
74	Oscillatory Beta Power Correlates With Akinesiaâ€Rigidity in the Parkinsonian Subthalamic Nucleus. Movement Disorders, 2017, 32, 174-175.	3.9	52
75	Pallidal stimulation for primary generalised dystonia: effect on cognition, mood and quality of life. Journal of Neurology, 2014, 261, 164-173.	3.6	51
76	Comparison of oscillatory activity in subthalamic nucleus in Parkinson's disease and dystonia. Neurobiology of Disease, 2017, 98, 100-107.	4.4	51
77	The pedunculopontine and peripeduncular nuclei: a tale of two structures. Brain, 2007, 130, e73-e73.	7.6	50
78	Improving Targeting in Image-Guided Frame-Based Deep Brain Stimulation. Operative Neurosurgery, 2010, 67, ons437-ons447.	0.8	50
79	Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. Brain, 2020, 143, 2607-2623.	7.6	50
80	The peripeduncular nucleus: a novel target for deep brain stimulation?. NeuroReport, 2007, 18, 1631-1632.	1.2	49
81	Gender distribution of patients with Parkinson's disease treated with subthalamic deep brain stimulation; a review of the 2000–2009 literature. Parkinsonism and Related Disorders, 2011, 17, 146-149.	2.2	49
82	Early and marked benefit with GPi DBS for Lubag syndrome presenting with rapidly progressive lifeâ€ŧhreatening dystonia. Movement Disorders, 2009, 24, 1710-1712.	3.9	48
83	Minimizing Brain Shift in Stereotactic Functional Neurosurgery. Operative Neurosurgery, 2010, 67, ons213-ons221.	0.8	46
84	The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices. PLoS ONE, 2015, 10, e0129077.	2.5	46
85	Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease. Experimental Neurology, 2013, 240, 122-129.	4.1	45
86	GBA-Associated Parkinson's Disease: Progression in a Deep Brain Stimulation Cohort. Journal of Parkinson's Disease, 2017, 7, 635-644.	2.8	44
87	Short and Long Term Outcome of Bilateral Pallidal Stimulation in Chorea-Acanthocytosis. PLoS ONE, 2013, 8, e79241.	2.5	44
88	The Use of Deep Brain Stimulation in Tourette Syndrome. Brain Sciences, 2016, 6, 35.	2.3	43
89	Publication productivity of neurosurgeons in Great Britain and Ireland. Journal of Neurosurgery, 2015, 122, 948-954.	1.6	41
90	A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biological Psychiatry, 2021, 90, 701-713.	1.3	41

#	Article	IF	CITATIONS
91	Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans. ELife, 2016, 5, .	6.0	41
92	Subthalamic nucleus gamma activity increases not only during movement but also during movement inhibition. ELife, 2017, 6, .	6.0	41
93	Ventral tegmental area deep brain stimulation in refractory short-lasting unilateral neuralgiform headache attacks. Brain, 2016, 139, 2631-2640.	7.6	40
94	Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease. Movement Disorders, 2011, 26, 1835-1843.	3.9	39
95	Dopamine Agonists Rather than Deep Brain Stimulation Cause Reflection Impulsivity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 139-144.	2.8	39
96	Subthalamic Nucleus Local Field Potential Activity Helps Encode Motor Effort Rather Than Force in Parkinsonism. Journal of Neuroscience, 2015, 35, 5941-5949.	3.6	39
97	Bilateral nucleus basalis of Meynert deep brain stimulation for dementia with Lewy bodies: A randomised clinical trial. Brain Stimulation, 2020, 13, 1031-1039.	1.6	39
98	A gamma band specific role of the subthalamic nucleus in switching during verbal fluency tasks in Parkinson's disease. Experimental Neurology, 2011, 232, 136-142.	4.1	37
99	Urinary incontinence following deep brain stimulation of the pedunculopontine nucleus. Acta Neurochirurgica, 2011, 153, 2357-2360.	1.7	37
100	Gender differences in quality of life following subthalamic stimulation for Parkinson's disease. Acta Neurologica Scandinavica, 2013, 128, 281-285.	2.1	37
101	<scp>l</scp> -Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease. Movement Disorders, 2017, 32, 874-883.	3.9	37
102	Deep brain stimulation for obsessive–compulsive disorder: a crisis of access. Nature Medicine, 2022, 28, 1529-1532.	30.7	36
103	Treatment of dysarthria following subthalamic nucleus deep brain stimulation for Parkinson's disease. Movement Disorders, 2011, 26, 2434-2436.	3.9	35
104	Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson's disease act under speed pressure. Experimental Brain Research, 2016, 234, 1837-1848.	1.5	35
105	Do we need to revise the tripartite subdivision hypothesis of the human subthalamic nucleus (STN)? Response to Alkemade and Forstmann. NeuroImage, 2015, 110, 1-2.	4.2	33
106	Refining the Deep Brain Stimulation Target within the Limbic Globus Pallidus Internus for Tourette Syndrome. Stereotactic and Functional Neurosurgery, 2017, 95, 251-258.	1.5	33
107	Parkinsonian signs in patients with cervical dystonia treated with pallidal deep brain stimulation. Brain, 2018, 141, 3023-3034.	7.6	33
108	Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson's disease. Brain, 2019, 142, 2417-2431.	7.6	33

#	Article	IF	CITATIONS
109	Subthalamic nucleus beta and gamma activity is modulated depending on the level of imagined grip force. Experimental Neurology, 2017, 293, 53-61.	4.1	31
110	Pallidal stimulation for cervical dystonia does not correct abnormal temporal discrimination. Movement Disorders, 2013, 28, 1874-1877.	3.9	30
111	Neuroimaging Technological Advancements for Targeting in Functional Neurosurgery. Current Neurology and Neuroscience Reports, 2019, 19, 42.	4.2	29
112	Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study. Journal of Neural Transmission, 2011, 118, 1487-1495.	2.8	28
113	The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity. Frontiers in Human Neuroscience, 2016, 10, 517.	2.0	28
114	The Effect of Short Pulse Width Settings on the Therapeutic Window in Subthalamic Nucleus Deep Brain Stimulation for Parkinson's disease. Journal of Parkinson's Disease, 2018, 8, 273-279.	2.8	28
115	Changing of the guard: reducing infection when replacing neural pacemakers. Journal of Neurosurgery, 2017, 126, 1165-1172.	1.6	27
116	Involvement of the subthalamic nucleus in engagement with behaviourally relevant stimuli. European Journal of Neuroscience, 2009, 29, 931-942.	2.6	25
117	Balance between competing spectral states in subthalamic nucleus is linked to motor impairment in Parkinson's disease. Brain, 2022, 145, 237-250.	7.6	25
118	Subthalamic nucleus gamma oscillations mediate a switch from automatic to controlled processing: A study of random number generation in Parkinson's disease. NeuroImage, 2013, 64, 284-289.	4.2	24
119	Surgical decision making for deep brain stimulation should not be based on aggregated normative data mining. Brain Stimulation, 2019, 12, 1345-1348.	1.6	24
120	Cortical connectivity of the nucleus basalis of Meynert in Parkinson's disease and Lewy body dementias. Brain, 2021, 144, 781-788.	7.6	24
121	Short Versus Conventional Pulseâ€Width Deep Brain Stimulation in Parkinson's Disease: A Randomized Crossover Comparison. Movement Disorders, 2020, 35, 101-108.	3.9	23
122	Cortical evoked potentials from pallidal stimulation in patients with primary generalized dystonia. Movement Disorders, 2008, 23, 265-273.	3.9	22
123	Strawberries on the Brain—Intracranial Capillary Hemangioma: Two Case Reports and Systematic Literature Review in Children and Adults. World Neurosurgery, 2013, 80, 900.e13-900.e21.	1.3	22
124	Deep Brain Stimulation of the Pallidum Internum for Gilles de la Tourette Syndrome: A Patient-Specific Model-Based Simulation Study of the Electric Field. Neuromodulation, 2015, 18, 90-96.	0.8	22
125	Functional Connectivity of the Pedunculopontine Nucleus and Surrounding Region in Parkinson's Disease. Cerebral Cortex, 2017, 27, 54-67.	2.9	22
126	Effect of Low versus High Frequency Subthalamic Deep Brain Stimulation on Speech Intelligibility and Verbal Fluency in Parkinson's Disease: A Double-Blind Study. Journal of Parkinson's Disease, 2019, 9, 141-151.	2.8	22

8

#	Article	IF	CITATIONS
127	Clinical applications of magnetic resonance imaging based functional and structural connectivity. NeuroImage, 2021, 244, 118649.	4.2	21
128	Successful pallidal deep brain stimulation in 15-year-old with Tourette syndrome: 2-year follow-up. Journal of Neurology, 2013, 260, 2417-2419.	3.6	20
129	The effect of posterior hypothalamus region deep brain stimulation on sleep. Cephalalgia, 2014, 34, 219-223.	3.9	20
130	Novel Programming Features Help Alleviate Subthalamic Nucleus Stimulationâ€Induced Side Effects. Movement Disorders, 2020, 35, 2261-2269.	3.9	20
131	Deep brain stimulation as a treatment for chorea-acanthocytosis. Journal of Neurology, 2013, 260, 303-305.	3.6	19
132	Controlling Parkinson's Disease With Adaptive Deep Brain Stimulation. Journal of Visualized Experiments, 2014, , .	0.3	19
133	Anterior capsulotomy for obsessive-compulsive disorder: a review of old and new literature. Journal of Neurosurgery, 2020, 133, 1595-1604.	1.6	19
134	Imageâ€verified deep brain stimulation reduces risk and cost with no apparent impact on efficacy. Movement Disorders, 2012, 27, 1585-1586.	3.9	18
135	Deep Brain Stimulation for Tourette syndrome: The Current State of the Field. Journal of Obsessive-Compulsive and Related Disorders, 2014, 3, 401-406.	1.5	18
136	Decisions Made with Less Evidence Involve Higher Levels of Corticosubthalamic Nucleus Theta Band Synchrony. Journal of Cognitive Neuroscience, 2016, 28, 811-825.	2.3	18
137	Ventral tegmental area deep brain stimulation for chronic cluster headache: Effects on cognition, mood, pain report behaviour and quality of life. Cephalalgia, 2019, 39, 1099-1110.	3.9	18
138	The Role of Imaging in the Surgical Treatment of Movement Disorders. Neuroimaging Clinics of North America, 2010, 20, 125-140.	1.0	17
139	Critical evaluation of the anatomical location of the Barrington nucleus: Relevance for deep brain stimulation surgery of pedunculopontine tegmental nucleus. Neuroscience, 2013, 247, 351-363.	2.3	17
140	Commercial flight and patients with intracranial mass lesions: a caveat. Journal of Neurosurgery, 2006, 105, 627-630.	1.6	16
141	Deep brain stimulation in cluster headache. Expert Review of Neurotherapeutics, 2011, 11, 473-475.	2.8	16
142	Letter to the Editor: A paradigm shift toward MRI-guided and MRI-verified DBS surgery. Journal of Neurosurgery, 2016, 124, 1135-1138.	1.6	16
143	Effects of pedunculopontine nucleus stimulation on human bladder function. Neurourology and Urodynamics, 2018, 37, 726-734.	1.5	16
144	Beta synchrony in the cortico-basal ganglia network during regulation of force control on and off dopamine. Neurobiology of Disease, 2019, 127, 253-263.	4.4	16

#	Article	IF	CITATIONS
145	What You See Is What You Get. Operative Neurosurgery, 2015, 11, 412-419.	0.8	15
146	Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS. Behavioural Neurology, 2017, 2017, 1-10.	2.1	15
147	Resting state activity and connectivity of the nucleus basalis of Meynert and globus pallidus in Lewy body dementia and Parkinson's disease dementia. NeuroImage, 2020, 221, 117184.	4.2	15
148	Microvascular decompression or neuromodulation in patients with SUNCT and trigeminal neurovascular conflict?. Cephalalgia, 2018, 38, 393-398.	3.9	14
149	A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. Journal of Neurosurgery, 2021, 135, 1445-1458.	1.6	14
150	Imageâ€guided and imageâ€verified deep brain stimulation. Movement Disorders, 2013, 28, 254-254.	3.9	13
151	Trigeminal neurovascular contact in SUNCT and SUNA: a cross-sectional magnetic resonance study. Brain, 2020, 143, 3619-3628.	7.6	13
152	The peripeduncular nucleus: a novel target for deep brain stimulation?. NeuroReport, 2007, 18, 1631-2; author reply 1632-3.	1.2	13
153	Basal Ganglia Pathways Associated With Therapeutic Pallidal Deep Brain Stimulation for Tourette Syndrome. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 961-972.	1.5	12
154	Pedunculopontine Nucleus Deep Brain Stimulation for Parkinsonian Disorders: A Case Series. Stereotactic and Functional Neurosurgery, 2021, 99, 287-294.	1.5	12
155	Entraining Stepping Movements of Parkinson's Patients to Alternating Subthalamic Nucleus Deep Brain Stimulation. Journal of Neuroscience, 2020, 40, 8964-8972.	3.6	12
156	Stimulation Sweet Spot in Subthalamic Deep Brain Stimulation – Myth or Reality? A Critical Review of Literature. Stereotactic and Functional Neurosurgery, 2021, 99, 425-442.	1.5	12
157	Deep brain stimulation of the subthalamic nucleus: histological verification and 9.4-T MRI correlation. Acta Neurochirurgica, 2015, 157, 2143-2147.	1.7	11
158	Connectivity derived thalamic segmentation: Separating myth from reality. NeuroImage: Clinical, 2019, 22, 101758.	2.7	11
159	Subthalamic nucleus deep brain stimulation for Parkinson's disease: current trends and future directions. Expert Review of Medical Devices, 2020, 17, 1063-1074.	2.8	11
160	Subcortical evoked activity and motor enhancement in Parkinson's disease. Experimental Neurology, 2016, 277, 19-26.	4.1	10
161	Impact of Subthalamic Deep Brain Stimulation Frequency on Upper Limb Motor Function in Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, 267-271.	2.8	10
162	Dynamic Network Connectivity Reveals Markers of Response to Deep Brain Stimulation in Parkinson's Disease. Frontiers in Human Neuroscience, 2021, 15, 729677.	2.0	10

#	Article	IF	CITATIONS
163	Aim for the Suprasternal Notch: Technical Note to Avoid Bowstringing after Deep Brain Stimulation. Stereotactic and Functional Neurosurgery, 2015, 93, 227-230.	1.5	9
164	Bilateral Deep Brain Stimulation of the Globus Pallidus Pars Interna in a Patient with Variant Ataxiaâ€Telangiectasia. Movement Disorders Clinical Practice, 2016, 3, 405-408.	1.5	9
165	Identification of nonlinear features in cortical and subcortical signals of Parkinson's Disease patients via a novel efficient measure. NeuroImage, 2020, 223, 117356.	4.2	9
166	Trigeminal microvascular decompression for short-lasting unilateral neuralgiform headache attacks. Brain, 2022, 145, 2882-2893.	7.6	9
167	Ventralis intermedius nucleus anatomical variability assessment by MRI structural connectivity. NeuroImage, 2021, 238, 118231.	4.2	8
168	Caught between a disc and a tumour: lumbar radiculopathy secondary to disc herniation and filum paraganglioma. Acta Neurochirurgica, 2013, 155, 315-317.	1.7	7
169	Patient-specific brain modelling for deep brain stimulation simulations. , 2013, , .		7
170	Successful Treatment of Levodopa/Carbidopa Intestinal Gel Associated "Biphasicâ€like―Dyskinesia with Pallidal Deep Brain Stimulation. Movement Disorders Clinical Practice, 2021, 8, 273-274.	1.5	7
171	The sensitivity to change of the cluster headache quality of life scale assessed before and after deep brain stimulation of the ventral tegmental area. Journal of Headache and Pain, 2021, 22, 52.	6.0	7
172	Skewering the Subthalamic Nucleus via a Parietal Approach. Stereotactic and Functional Neurosurgery, 2011, 89, 70-75.	1.5	6
173	MRI-verified "asleep―deep brain stimulation in Malta through cross border collaboration: clinical outcome of the first five years. British Journal of Neurosurgery, 2018, 32, 365-371.	0.8	6
174	Exploring every ethical avenue. Commentary: The Moral Obligation to Prioritize Research Into Deep Brain Stimulation Over Brain Lesioning Procedures for Severe Enduring Anorexia Nervosa. Frontiers in Psychiatry, 2019, 10, 326.	2.6	6
175	Volitional Control of Brain Motor Activity and Its Therapeutic Potential. Neuromodulation, 2022, 25, 1187-1196.	0.8	6
176	Giant extradural sacral meningioma. Acta Neurochirurgica, 2010, 152, 485-488.	1.7	5
177	Uncertainty, misunderstanding and the pedunculopontine nucleus. Acta Neurochirurgica, 2012, 154, 839-841.	1.7	5
178	Letter to the Editor: Deep brain stimulation for dystonia. Journal of Neurosurgery, 2014, 120, 1496-1497.	1.6	5
179	Thalamicâ€Caudal Zona Incerta Deep Brain Stimulation for Refractory Orthostatic Tremor: A Report of 3 Cases. Movement Disorders Clinical Practice, 2017, 4, 105-110.	1.5	5
180	Globus pallidal deep brain stimulation for Tourette syndrome: Effects on cognitive function. Parkinsonism and Related Disorders, 2019, 69, 14-18.	2.2	5

#	Article	IF	CITATIONS
181	Long-term success of low-frequency subthalamic nucleus stimulation for Parkinson's disease depends on tremor severity and symptom duration. Brain Communications, 2021, 3, fcab165.	3.3	5
182	The effects of deep brain stimulation of the pedunculopontine nucleus on cognition in Parkinson's disease and Progressive Supranuclear Palsy. Clinical Parkinsonism & Related Disorders, 2019, 1, 48-51.	0.9	4
183	Inhibitory Control on a Stop Signal Task in Tourette Syndrome before and after Deep Brain Stimulation of the Internal Segment of the Globus Pallidus. Brain Sciences, 2021, 11, 461.	2.3	4
184	Thalamotomy using MRI-guided focused ultrasound significantly improves contralateral symptoms and quality of life in essential tremor. Evidence-Based Medicine, 2017, 22, 64-64.	0.6	3
185	16â€A randomised controlled trial of deep brain stimulation in obsessive compulsive disorder: a comparison of ventral capsule/ventral striatum and subthalamic nucleus targets. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A8.2-A9.	1.9	3
186	Deep Brain Stimulation for Movement Disorders. , 2018, , 781-798.e4.		3
187	Endurance of Short Pulse Width Thalamic Stimulation Efficacy in Intention Tremor. Stereotactic and Functional Neurosurgery, 2021, 99, 281-286.	1.5	3
188	A Randomized Trial Directly Comparing Ventral Capsule and Anteromedial Subthalamic Nucleus Stimulation in Obsessive-Compulsive Disorder: Clinical and Imaging Evidence for Dissociable Effects. Focus (American Psychiatric Publishing), 2022, 20, 160-169.	0.8	3
189	Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson's Disease Dementia: A 36 Months Follow Up Study. Movement Disorders Clinical Practice, 2022, 9, 765-774.	1.5	3
190	Unusual cervical nerve root arrangement exposed during surgery: Case report and review of the literature. British Journal of Neurosurgery, 2004, 18, 624-626.	0.8	2
191	Seeing Is Believing: Imaging and Stereotactic Functional Neurosurgery. World Neurosurgery, 2011, 75, 22-24.	1.3	2
192	Comment on "Appropriate MRI sequences are required to accurately determine lead location after deep brain stimulation surgery― Journal of Clinical Neuroscience, 2014, 21, 2257-2258.	1.5	2
193	Letter: Systematic Stereotactic Error Reduction Using a Calibration Technique in Single-Brain-Pass and Multitrack Deep Brain Stimulations. Operative Neurosurgery, 2019, 16, E67-E67.	0.8	2
194	What to do with the patient who has had a fit and the scan shows a 'glioma'?. Practical Neurology, 2005, 5, 84-91.	1.1	2
195	Conflict Detection in a Sequential Decision Task Is Associated with Increased Cortico-Subthalamic Coherence and Prolonged Subthalamic Oscillatory Response in the β Band. Journal of Neuroscience, 2022, 42, 4681-4692.	3.6	2
196	Neuromodulation: Anatomical Precision Is Neither Tedious Nor Outdated. Neuromodulation, 2010, 13, 70-71.	0.8	1
197	Comment on "A systematic review of the efficacy of globus pallidus stimulation in the treatment of Parkinson's disease― Journal of Clinical Neuroscience, 2010, 17, 1480.	1.5	1
198	Conclusions should be supported by the data presented. British Journal of Neurosurgery, 2013, 27, 545-546.	0.8	1

#	Article	IF	CITATIONS
199	Errors of Image Coregistration may Necessitate Intraoperative Refinement in Functional Neurosurgery. Journal of Neurological Surgery, Part A: Central European Neurosurgery, 2013, 74, 335-336.	0.8	1
200	Morality and ethics without religion. , 2015, 6, 28.		1
201	A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism and Related Disorders, 2021, 87, 142-154.	2.2	1
202	Bilateral painful tic convulsif. BMJ Case Reports, 2017, 2017, bcr-2017-221380.	0.5	1
203	Letter to the Editor. ClearPoint versus frame-based MRI-guided and MRI-verified deep brain stimulation. Journal of Neurosurgery, 2020, 133, 1624-1626.	1.6	1
204	Reply to â€~Comment on "A systematic review of the efficacy of globus pallidus stimulation in the treatment of Parkinson's diseaseâ€â€™. Journal of Clinical Neuroscience, 2010, 17, 1481.	1.5	0
205	The surgical anatomy of the pedunculopontine nucleus cannot be disputed, buried or exhumed. Acta Neurochirurgica, 2012, 154, 1531-1533.	1.7	0
206	Deep brain stimulation: Linking structure and function in awake and anesthetized patients. Clinical Neurophysiology, 2012, 123, 2325.	1.5	0
207	DEEP BRAIN STIMULATION IN INTRACTABLE SHORT-LASTING UNILATERAL NEURALGIFORM HEADACHE ATTACKS: A MULTICASE SERIES. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, e4.119-e4.	1.9	0
208	Neuromodulation for Trigeminal Autonomic Cephalalgias. , 2018, , 313-327.		0
209	Aberrant Abducent Nerve During Microvascular Decompression for Trigeminal Neuralgia. World Neurosurgery, 2020, 138, 454-456.	1.3	0
210	Fashion focus: neurosurgery for tremor. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 459-459.	1.9	0
211	Reply to Comment on: Successful Treatment of Levodopa/Carbidopa Intestinal Gel Associated "Biphasicâ€Like―Dyskinesia with Pallidal Deep Brain Stimulation. Movement Disorders Clinical Practice, 2021, 8, 814-815.	1.5	0
212	Reply to: Subthalamic Nucleus Deep Brain Stimulation as Rescue Therapy for Levodopa Carbidopa Intestinal Gel–Associated Biphasic‣ike Dyskinesias. Movement Disorders Clinical Practice, 2021, 8, 1157-1158.	1.5	0
213	Cluster Headache: Deep Brain Stimulation. , 2020, , 485-498.		0
214	Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease: Valuable Programming Insights from Anecdotal Observations. Stereotactic and Functional Neurosurgery, 2020, 98, 62-64.	1.5	0
215	Network-Based Imaging and Connectomics. , 2020, , 73-91.		0
216	Response. Journal of Neurosurgery, 2015, 122, 1026-7.	1.6	0