
Randall S Prather

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5273242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene editing provides a tool to investigate genes involved in reproduction of pigs. Molecular Reproduction and Development, 2023, 90, 459-468.	2.0	0
2	Limited Expansion of Human Hepatocytes in FAH/ <i>RAG2</i> -Deficient Swine. Tissue Engineering - Part A, 2022, 28, 150-160.	3.1	5
3	Production of Pigs From Porcine Embryos Generated in vitro. Frontiers in Animal Science, 2022, 3, .	1.9	10
4	Disruption of anthrax toxin receptor 1 in pigs leads to a rare disease phenotype and protection from senecavirus A infection. Scientific Reports, 2022, 12, 5009.	3.3	7
5	Chloride channel accessory 1 gene deficiency causes selective loss of mucus production in a new pig model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L842-L852.	2.9	5
6	Improvements in pig agriculture through gene editing. CABI Agriculture and Bioscience, 2022, 3, .	2.4	8
7	Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1. PLoS ONE, 2021, 16, e0243727.	2.5	34
8	Gene editing to investigate the role of conceptus factors in the establishment of pregnancy in the pig. Reproduction, 2021, 161, R79-R88.	2.6	9
9	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
10	Neither gonadotropin nor cumulus cell expansion is needed for the maturation of competent porcine oocytes in vitroâ€. Biology of Reproduction, 2021, 105, 533-542.	2.7	8
11	Glutaminolysis is involved in the activation of mTORC1 in in vitroâ€produced porcine embryos. Molecular Reproduction and Development, 2021, 88, 490-499.	2.0	5
12	Cardiovascular Development and Congenital Heart Disease Modeling in the Pig. Journal of the American Heart Association, 2021, 10, e021631.	3.7	21
13	Disrupting porcine glutaminase does not block preimplantation development and elongation nor decrease mTORC1 activation in conceptuses. Biology of Reproduction, 2021, 105, 1104-1113.	2.7	4
14	Effects of RAD51-stimulatory compound 1 (RS-1) and its vehicle, DMSO, on pig embryo culture. Reproductive Toxicology, 2021, 105, 44-52.	2.9	3
15	Conceptus interferon gamma is essential for establishment of pregnancy in the pig. Biology of Reproduction, 2021, 105, 1577-1590.	2.7	13
16	Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells, 2021, 10, 2770.	4.1	15
17	Serologic titers to Leptospira in vaccinated pigs and interpretation for surveillance. PLoS ONE, 2021, 16, e0260052.	2.5	4
18	Ablation of conceptus PTGS2 expression does not alter early conceptus development and establishment of pregnancy in the pigâ€. Biology of Reproduction, 2020, 102, 475-488.	2.7	16

#	Article	IF	CITATIONS
19	The use of cells from ANPEP knockout pigs to evaluate the role of aminopeptidase N (APN) as a receptor for porcine deltacoronavirus (PDCoV). Virology, 2020, 541, 136-140.	2.4	37
20	Removal of hypotaurine from porcine embryo culture medium does not impair development of in vitroâ€fertilized or somatic cell nuclear transferâ€derived embryos at low oxygen tension. Molecular Reproduction and Development, 2020, 87, 773-782.	2.0	5
21	Chemical simulation of hypoxia in donor cells improves development of somatic cell nuclear transferâ€derived embryos and increases abundance of transcripts related to glycolysis. Molecular Reproduction and Development, 2020, 87, 763-772.	2.0	5
22	A novel swine sex-linked marker and its application across different mammalian species. Transgenic Research, 2020, 29, 395-407.	2.4	3
23	A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight, 2020, 5, .	5.0	29
24	Lack of airway submucosal glands impairs respiratory host defenses. ELife, 2020, 9, .	6.0	26
25	Pharmacologic treatment with CPI-613 and PS48 decreases mitochondrial membrane potential and increases quantity of autolysosomes in porcine fibroblasts. Scientific Reports, 2019, 9, 9417.	3.3	4
26	Applications of omics and nanotechnology to improve pig embryo production in vitro. Molecular Reproduction and Development, 2019, 86, 1531-1547.	2.0	7
27	In Vitro Maturation, Fertilization, and Culture of Pig Oocytes and Embryos. Methods in Molecular Biology, 2019, 2006, 93-103.	0.9	23
28	New perspective on conceptus estrogens in maternal recognition and pregnancy establishment in the pigâ€. Biology of Reproduction, 2019, 101, 148-161.	2.7	50
29	Improvement of in vitro and early in utero porcine clone development after somatic donor cells are cultured under hypoxia. Molecular Reproduction and Development, 2019, 86, 558-565.	2.0	10
30	Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Research, 2019, 28, 21-32.	2.4	86
31	Zygote injection of RNA encoding Cre recombinase results in efficient removal of LoxP flanked neomycin cassettes in pigs. Transgenic Research, 2018, 27, 167-178.	2.4	6
32	Single step production of Cas9 mRNA for zygote injection. BioTechniques, 2018, 64, 118-124.	1.8	2
33	Pharmacologic treatment of donor cells induced to have a Warburg effectâ€like metabolism does not alter embryonic development in vitro or survival during early gestation when used in somatic cell nuclear transfer in pigs. Molecular Reproduction and Development, 2018, 85, 290-302.	2.0	5
34	Pharmacologic Reprogramming Designed to Induce a Warburg Effect in Porcine Fetal Fibroblasts Alters Gene Expression and Quantities of Metabolites from Conditioned Media Without Increased Cell Proliferation. Cellular Reprogramming, 2018, 20, 38-48.	0.9	12
35	Inactivation of porcine interleukin-1β results in failure of rapid conceptus elongation. Proceedings of the United States of America, 2018, 115, 307-312.	7.1	40
36	Anatomic Studies of the Miniature Swine Cornea. Anatomical Record, 2018, 301, 1955-1967.	1.4	6

#	Article	IF	CITATIONS
37	Porcine Fetal-Derived Fibroblasts Alter Gene Expression and Mitochondria to Compensate for Hypoxic Stress During Culture. Cellular Reprogramming, 2018, 20, 225-235.	0.9	4
38	Glutamine supplementation enhances development of in vitro-produced porcine embryos and increases leucine consumption from the mediumâ€. Biology of Reproduction, 2018, 99, 938-948.	2.7	42
39	Use of gene-editing technology to introduce targeted modifications in pigs. Journal of Animal Science and Biotechnology, 2018, 9, 5.	5.3	48
40	Genetic engineering alveolar macrophages for host resistance to PRRSV. Veterinary Microbiology, 2017, 209, 124-129.	1.9	10
41	Genomeâ€editing technologies to improve research, reproduction, and production in pigs. Molecular Reproduction and Development, 2017, 84, 1012-1017.	2.0	35
42	Rapid conceptus elongation in the pig: An interleukin 1 beta 2 and estrogenâ€regulated phenomenon. Molecular Reproduction and Development, 2017, 84, 760-774.	2.0	40
43	Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Molecular Reproduction and Development, 2017, 84, 926-933.	2.0	34
44	Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology, 2017, 501, 102-106.	2.4	68
45	Knockout of maternal CD163 protects fetuses from infection with porcine reproductive and respiratory syndrome virus (PRRSV). Scientific Reports, 2017, 7, 13371.	3.3	24
46	Swine models, genomic tools and services to enhance our understanding of human health and diseases. Lab Animal, 2017, 46, 167-172.	0.4	59
47	Porcine Neural Progenitor Cells Derived from Tissue at Different Gestational Ages Can Be Distinguished by Global Transcriptome. Cell Transplantation, 2017, 26, 1582-1595.	2.5	0
48	Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5796-E5804.	7.1	102
49	Replacement of Porcine CD163 Scavenger Receptor Cysteine-Rich Domain 5 with a CD163-Like Homolog Confers Resistance of Pigs to Genotype 1 but Not Genotype 2 Porcine Reproductive and Respiratory Syndrome Virus. Journal of Virology, 2017, 91, .	3.4	94
50	Zygote injection of CRISPR/Cas9 RNA successfully modifies the target gene without delaying blastocyst development or altering the sex ratio in pigs. Transgenic Research, 2017, 26, 97-107.	2.4	42
51	Progression of Pro23His Retinopathy in a Miniature Swine Model of Retinitis Pigmentosa. Translational Vision Science and Technology, 2017, 6, 4.	2.2	19
52	Recombination activating gene-2null severe combined immunodeficient pigs and mice engraft human induced pluripotent stem cells differently. Oncotarget, 2017, 8, 69398-69407.	1.8	15
53	Glycine supplementation in vitro enhances porcine preimplantation embryo cell number and decreases apoptosis but does not lead to live births. Molecular Reproduction and Development, 2016, 83, 246-258.	2.0	33
54	Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 2016, 34, 20-22.	17.5	383

#	Article	IF	CITATIONS
55	Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases. Toxicologic Pathology, 2016, 44, 428-433.	1.8	21
56	Partial loss of interleukin 2 receptor gamma function in pigs provides mechanistic insights for the study of human immunodeficiency syndrome. Oncotarget, 2016, 7, 50914-50926.	1.8	8
57	Inclusion of homologous <scp>DNA</scp> in nucleaseâ€mediated gene targeting facilitates a higher incidence of biâ€allelically modified cells. Xenotransplantation, 2015, 22, 379-390.	2.8	12
58	Engineering protein processing of the mammary gland to produce abundant hemophilia B therapy in milk. Scientific Reports, 2015, 5, 14176.	3.3	11
59	Swine in Biomedical Research 2014. Lab Animal, 2015, 44, 9-9.	0.4	4
60	PS48 can replace bovine serum albumin in pig embryo culture medium, and improve in vitro embryo development by phosphorylating AKT. Molecular Reproduction and Development, 2015, 82, 315-320.	2.0	23
61	A Genetic Porcine Model of Cancer. PLoS ONE, 2015, 10, e0128864.	2.5	128
62	Disruption of Mitochondrion-To-Nucleus Interaction in Deceased Cloned Piglets. PLoS ONE, 2015, 10, e0129378.	2.5	7
63	Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis. Reproduction, Fertility and Development, 2015, 27, 655.	0.4	32
64	Oxamflatin Treatment Enhances Cloned Porcine Embryo Development and Nuclear Reprogramming <sup />. Cellular Reprogramming, 2015, 17, 28-40.</sup 	0.9	29
65	Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reproduction, Fertility and Development, 2015, 27, 602.	0.4	40
66	Impairment of Preimplantation Porcine Embryo Development by Histone Demethylase KDM5B Knockdown Through Disturbance of Bivalent H3K4me3-H3K27me3 Modifications1. Biology of Reproduction, 2015, 92, 72.	2.7	46
67	Transcriptome Analysis of Pig <i>In Vivo</i> , <i>In Vitro</i> –Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway. Cellular Reprogramming, 2015, 17, 243-258.	0.9	21
68	Pig oocyte activation using a Zn2+ chelator, TPEN. Theriogenology, 2015, 84, 1024-1032.	2.1	30
69	Cryopreservation of In Vitro-Produced Early-Stage Porcine Embryos in a Closed System. BioResearch Open Access, 2015, 4, 258-265.	2.6	7
70	Dickkopf-Related Protein 1 Inhibits the WNT Signaling Pathway and Improves Pig Oocyte Maturation. PLoS ONE, 2014, 9, e95114.	2.5	23
71	Cloning Pigs by Somatic Cell Nuclear Transfer. , 2014, , 245-254.		4
72	Dysregulation of genome-wide gene expression and DNA methylation in abnormal cloned piglets. BMC Genomics, 2014, 15, 811.	2.8	45

#	Article	IF	CITATIONS
73	Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated <i>RAG2</i> and accompanying severe combined immunodeficiency. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7260-7265.	7.1	99
74	Cell cycle synchronization of leukemia inhibitory factor (LIF)-dependent porcine-induced pluripotent stem cells and the generation of cloned embryos. Cell Cycle, 2014, 13, 1265-1276.	2.6	17
75	The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reproductive Biology and Endocrinology, 2014, 12, 111.	3.3	119
76	Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOC. Developmental Biology, 2014, 386, 86-95.	2.0	48
77	Methylated DNA Immunoprecipitation and High-Throughput Sequencing (MeDIP-seq) Using Low Amounts of Genomic DNA. Cellular Reprogramming, 2014, 16, 175-184.	0.9	59
78	Transcriptional regulators TRIM28 , SETDB1 , and TP53 are aberrantly expressed in porcine embryos produced by in vitro fertilization in comparison to in vivo―and somaticâ€cell nuclear transferâ€derived embryos. Molecular Reproduction and Development, 2014, 81, 552-566.	2.0	8
79	Use of the CRISPR/Cas9 System to Produce Genetically Engineered Pigs from In Vitro-Derived Oocytes and Embryos1. Biology of Reproduction, 2014, 91, 78.	2.7	275
80	Genomic profiling to improve embryogenesis in the pig. Animal Reproduction Science, 2014, 149, 39-45.	1.5	7
81	Gynogenetic Activation of Porcine Oocytes. Cellular Reprogramming, 2014, 16, 121-129.	0.9	4
82	Piglets produced from cloned blastocysts cultured in vitro with GM SF. Molecular Reproduction and Development, 2013, 80, 145-154.	2.0	62
83	Transcriptional profiling by RNA-Seq of peri-attachment porcine embryos generated by a variety of assisted reproductive technologies. Physiological Genomics, 2013, 45, 577-589.	2.3	19
84	Locus-Specific DNA Methylation Reprogramming During Early Porcine Embryogenesis1. Biology of Reproduction, 2013, 88, 48.	2.7	27
85	Genetically Engineered Pig Models for Human Diseases. Annual Review of Animal Biosciences, 2013, 1, 203-219.	7.4	145
86	Pig genomics for biomedicine. Nature Biotechnology, 2013, 31, 122-123.	17.5	49
87	An Intact Sialoadhesin (Sn/SIGLEC1/CD169) Is Not Required for Attachment/Internalization of the Porcine Reproductive and Respiratory Syndrome Virus. Journal of Virology, 2013, 87, 9538-9546.	3.4	106
88	Transgenic pig carrying green fluorescent proteasomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6334-6339.	7.1	41
89	Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Scientific Reports, 2013, 3, 1981.	3.3	82
90	Targeted DNA Methylation Analysis by High Throughput Sequencing in Porcine Peri-attachment Embryos. Journal of Reproduction and Development, 2013, 59, 314-320.	1.4	6

#	Article	IF	CITATIONS
91	Advancements in somatic cell nuclear transfer and future perspectives. Animal Frontiers, 2013, 3, 56-61.	1.7	20
92	Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. Journal of Clinical Investigation, 2013, 123, 2685-2693.	8.2	109
93	High-Throughput Cryopreservation of In Vivo-Derived Swine Embryos. PLoS ONE, 2013, 8, e65545.	2.5	8
94	Advancing swine models for human health and diseases. Missouri Medicine, 2013, 110, 212-5.	0.3	35
95	CELL BIOLOGY SYMPOSIUM: Zinc finger nucleases to create custom-designed modifications in the swine (Sus scrofa) genome1,2. Journal of Animal Science, 2012, 90, 1111-1117.	0.5	30
96	Effects of Combined Treatment of MG132 and Scriptaid on Early and Term Development of Porcine Somatic Cell Nuclear Transfer Embryos. Cellular Reprogramming, 2012, 14, 385-389.	0.9	17
97	Generation of an Inbred Miniature Pig Model of Retinitis Pigmentosa. , 2012, 53, 501.		134
98	<i>Xenopus</i> Egg Extract Treatment Reduced Global DNA Methylation of Donor Cells and Enhanced Somatic Cell Nuclear Transfer Embryo Development in Pigs. BioResearch Open Access, 2012, 1, 79-87.	2.6	22
99	Turning back the clock and revolutionizing a science. The 2012 Nobel Prize in Physiology or Medicine goes to Developmental Biology. John Bertrand Gurdon, Nobel Laureate. Molecular Reproduction and Development, 2012, 79, Fm i.	2.0	0
100	Emerging applications of sperm, embryo and somatic cell cryopreservation in maintenance, relocation and rederivation of swine genetics. Theriogenology, 2012, 78, 1720-1729.	2.1	10
101	The In Vivo Developmental Potential of Porcine Skin-Derived Progenitors and Neural Stem Cells. Stem Cells and Development, 2012, 21, 2682-2688.	2.1	9
102	Regulation of oocyte mitochondrial DNA copy number by follicular fluid, EGF, and neuregulin 1 during in vitro maturation affects embryo development in pigs. Theriogenology, 2012, 78, 887-897.	2.1	43
103	Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Medical Genomics, 2012, 5, 55.	1.5	89
104	Small RNA Profile of the Cumulus-Oocyte Complex and Early Embryos in the Pig1. Biology of Reproduction, 2012, 87, 117.	2.7	58
105	Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcine embryos derived from in vitro fertilization, somatic cell nuclear transfer and parthenogenesis. Molecular Reproduction and Development, 2012, 79, 197-207.	2.0	51
106	Glycolysis in preimplantation development is partially controlled by the Warburg Effect. Molecular Reproduction and Development, 2012, 79, 262-271.	2.0	82
107	Replacement of bovine serum albumin with <i>N</i> â€methylâ€< scp>Dâ€aspartic acid and homocysteine improves development, but not live birth. Molecular Reproduction and Development, 2012, 79, 310-310.	2.0	10
108	A role for the Warburg effect in preimplantation embryo development: Metabolic modification to support rapid cell proliferation. Molecular Reproduction and Development, 2012, 79, 311-320.	2.0	190

#	Article	IF	CITATIONS
109	Effects of griseofulvin on in vitro porcine oocyte maturation and embryo development. Environmental and Molecular Mutagenesis, 2012, 53, 561-566.	2.2	10
110	Use of single stranded targeting DNA or negative selection does not provide additional enrichment from a GGTA1 promoter trap. Journal of Molecular Cloning & Genetic Recombination, 2012, 02, .	0.0	1
111	Scriptaid Corrects Gene Expression of a Few Aberrantly Reprogrammed Transcripts in Nuclear Transfer Pig Blastocyst Stage Embryos. Cellular Reprogramming, 2011, 13, 191-204.	0.9	69
112	The multi-potentiality of skin-derived stem cells in pigs. Theriogenology, 2011, 75, 1372-1380.	2.1	10
113	Birth of piglets from in vitro-produced, zona-intact porcine embryos vitrified in a closed system. Theriogenology, 2011, 76, 280-289.	2.1	26
114	Long Chain Omega-3 Fatty Acid Levels in Loin Muscle from Transgenic (fat-1 gene) Pigs and Effects on Lipid Oxidation During Storage. Food Biotechnology, 2011, 25, 103-114.	1.5	10
115	Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Molecular Reproduction and Development, 2011, 78, 2-2.	2.0	104
116	Genetic modifications of pigs for medicine and agriculture. Molecular Reproduction and Development, 2011, 78, 879-891.	2.0	158
117	Vascular endothelium-specific overexpression of human catalase in cloned pigs. Transgenic Research, 2011, 20, 989-1001.	2.4	29
118	Disruption of the Survival Motor Neuron (SMN) gene in pigs using ssDNA. Transgenic Research, 2011, 20, 1293-1304.	2.4	44
119	Altered Gene Expression Profiles in the Brain, Kidney, and Lung of One-Month-Old Cloned Pigs. Cellular Reprogramming, 2011, 13, 215-223.	0.9	14
120	Cloning by Nuclear Transfer. , 2011, , 230-233.		0
121	The Δ <i>F508</i> Mutation Causes CFTR Misprocessing and Cystic Fibrosis–Like Disease in Pigs. Science Translational Medicine, 2011, 3, 74ra24.	12.4	178
122	Leukemia Inhibitory Factor (LIF)-dependent, Pluripotent Stem Cells Established from Inner Cell Mass of Porcine Embryos. Journal of Biological Chemistry, 2011, 286, 28948-28953.	3.4	93
123	Lowâ€density lipoprotein (LDL) receptor mRNA and protein may enable LDL to replace bovine serum albumin during the in vitro swine embryo development. Molecular Reproduction and Development, 2010, 77, 298-298.	2.0	7
124	Whatever happened to the "cell-block―during mammalian embryogenesis?. Molecular Reproduction and Development, 2010, 77, NA-NA.	2.0	4
125	The role of cytoplasmic polyadenylation element sequence on mRNA abundance during porcine embryogenesis and parthenogenetic development. Molecular Reproduction and Development, 2010, 77, 699-709.	2.0	6
126	Transcriptional profiling of day 12 porcine embryonic disc and trophectoderm samples using ultra-deep sequencing technologies. Molecular Reproduction and Development, 2010, 77, 812-819.	2.0	16

#	Article	IF	CITATIONS
127	Activation method does not alter abnormal placental gene expression and development in cloned pigs. Molecular Reproduction and Development, 2010, 77, 1016-1030.	2.0	20
128	Somatic cell nuclear transfer efficiency: How can it be improved through nuclear remodeling and reprogramming?. Molecular Reproduction and Development, 2010, 77, 1001-1015.	2.0	96
129	Histone Deacetylase Inhibitors Improve <i>In Vitro</i> and <i>In Vivo</i> Developmental Competence of Somatic Cell Nuclear Transfer Porcine Embryos. Cellular Reprogramming, 2010, 12, 75-83.	0.9	132
130	Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell and Tissue Research, 2010, 341, 13-21.	2.9	84
131	Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Research, 2010, 19, 611-620.	2.4	42
132	Discovery of putative oocyte quality markers by comparative ExacTag proteomics. Proteomics - Clinical Applications, 2010, 4, 337-351.	1.6	22
133	Porcine oocytes denuded before maturation can develop to the blastocyst stage if provided a cumulous cell-derived coculture system1. Journal of Animal Science, 2010, 88, 2604-2610.	0.5	30
134	Transcriptional Profiling by Deep Sequencing Identifies Differences in mRNA Transcript Abundance in In Vivo-Derived Versus In Vitro-Cultured Porcine Blastocyst Stage Embryos1. Biology of Reproduction, 2010, 83, 791-798.	2.7	66
135	Cystic Fibrosis Pigs Develop Lung Disease and Exhibit Defective Bacterial Eradication at Birth. Science Translational Medicine, 2010, 2, 29ra31.	12.4	416
136	Deciphering the Mesodermal Potency of Porcine Skin-Derived Progenitors (SKP) by Microarray Analysis. Cellular Reprogramming, 2010, 12, 161-173.	0.9	8
137	Porcine Skin-Derived Progenitor (SKP) Spheres and Neurospheres: Distinct "Stemness―Identified by Microarray Analysis. Cellular Reprogramming, 2010, 12, 329-345.	0.9	8
138	Altered Gene Expression Profiles in the Brain, Kidney, and Lung of Deceased Neonatal Cloned Pigs. Cellular Reprogramming, 2010, 12, 589-597.	0.9	11
139	Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20571-20575.	7.1	101
140	Contribution to neural and mesodermal lineages by porcine skin-derived progenitors (SKPs) in vivo. Cell Cycle, 2010, 9, 2040-2041.	2.6	5
141	Porcine Skin-Derived Stem Cells Can Serve as Donor Cells for Nuclear Transfer. Cloning and Stem Cells, 2009, 11, 101-109.	2.6	27
142	Significant Improvement in Cloning Efficiency of an Inbred Miniature Pig by Histone Deacetylase Inhibitor Treatment after Somatic Cell Nuclear Transfer1. Biology of Reproduction, 2009, 81, 525-530.	2.7	216
143	Tracing the Stemness of Porcine Skin-Derived Progenitors (pSKP) Back to Specific Marker Gene Expression. Cloning and Stem Cells, 2009, 11, 111-122.	2.6	38
144	Centrosome abnormalities during porcine oocyte aging. Environmental and Molecular Mutagenesis, 2009, 50, 666-671.	2.2	40

#	Article	IF	CITATIONS
145	Identification and quantification of differentially represented transcripts in in vitro and in vivo derived preimplantation bovine embryos. Molecular Reproduction and Development, 2009, 76, 48-60.	2.0	22
146	Acid peptidase activity released from in vitro produced porcine embryos: A candidate marker to predict developmental competence. Molecular Reproduction and Development, 2009, 76, 417-428.	2.0	10
147	Heat shock of porcine zygotes immediately after oocyte activation increases viability. Molecular Reproduction and Development, 2009, 76, 548-554.	2.0	19
148	Method of oocyte activation affects cloning efficiency in pigs. Molecular Reproduction and Development, 2009, 76, 490-500.	2.0	65
149	Production of Piglets after Cryopreservation of Embryos Using a Centrifugation-Based Method for Delipation Without Micromanipulation1. Biology of Reproduction, 2009, 80, 563-571.	2.7	37
150	Altered gene expression in cloned piglets. Reproduction, Fertility and Development, 2009, 21, 60.	0.4	29
151	Enhanced developmental potential of heat-shocked porcine parthenogenetic embryos is related to accelerated mitogen-activated protein kinase dephosphorylation. Reproduction, Fertility and Development, 2009, 21, 892.	0.4	4
152	Somatic Cell Nuclear Transfer to Create a Miniature Swine Model of Retinitis Pigmentosa. FASEB Journal, 2009, 23, LB32.	0.5	2
153	Development of a porcine model of cystic fibrosis. Transactions of the American Clinical and Climatological Association, 2009, 120, 149-62.	0.5	60
154	Transcriptional, post-transcriptional and epigenetic control of porcine oocyte maturation and embryogenesis. Society of Reproduction and Fertility Supplement, 2009, 66, 165-76.	0.2	13
155	Flow cytometric cell cycle analysis of cultured brown bear fibroblast cells. Cell Biology International, 2008, 32, 855-859.	3.0	10
156	Identification and characterization of the porcine (<i>Sus scrofa</i>) survival motor neuron (<i>SMN1</i>) gene: An animal model for therapeutic studies. Developmental Dynamics, 2008, 237, 2268-2278.	1.8	19
157	Expression of mitochondrial transcription factor A (TFAM) during porcine gametogenesis and preimplantation embryo development. Journal of Cellular Physiology, 2008, 217, 529-543.	4.1	33
158	Expression of X-linked genes in deceased neonates and surviving cloned female piglets. Molecular Reproduction and Development, 2008, 75, 265-273.	2.0	37
159	Aberrant DNA methylation in porcine in vitro-, parthenogenetic-, and somatic cell nuclear transfer-produced blastocysts. Molecular Reproduction and Development, 2008, 75, 250-264.	2.0	45
160	Osteopontin improves in vitro development of porcine embryos and decreases apoptosis. Molecular Reproduction and Development, 2008, 75, 291-298.	2.0	47
161	Disruption of the <i>CFTR</i> Gene Produces a Model of Cystic Fibrosis in Newborn Pigs. Science, 2008, 321, 1837-1841.	12.6	686
162	Analysis of Heterogeneous Mitochondria Distribution in Somatic Cell Nuclear Transfer Porcine Embryos. Microscopy and Microanalysis, 2008, 14, 418-432.	0.4	11

#	Article	IF	CITATIONS
163	The porcine lung as a potential model for cystic fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L240-L263.	2.9	206
164	Isolation of Progenitor Cells from GFP-Transgenic Pigs and Transplantation to the Retina of Allorecipients. Cloning and Stem Cells, 2008, 10, 391-402.	2.6	51
165	Production of CFTR-null and CFTR-ΔF508 heterozygous pigs by adeno-associated virus–mediated gene targeting and somatic cell nuclear transfer. Journal of Clinical Investigation, 2008, 118, 1571-1577.	8.2	294
166	GENETICALLY MODIFIED PIGS FOR MEDICINE AND AGRICULTURE. , 2008, 25, 245-266.		59
167	PAWP, a Sperm-specific WW Domain-binding Protein, Promotes Meiotic Resumption and Pronuclear Development during Fertilization. Journal of Biological Chemistry, 2007, 282, 12164-12175.	3.4	155
168	Correlation of Developmental Differences of Nuclear Transfer Embryos Cells to the Methylation Profiles of Nuclear Transfer Donor Cells in Swine. Epigenetics, 2007, 2, 179-186.	2.7	27
169	Remodeling of Centrosomes in Intraspecies and Interspecies Nuclear Transfer Porcine Embryos. Cell Cycle, 2007, 6, 1509-1520.	2.6	23
170	Targeted Genetic Modification: Xenotransplantation And Beyond. Cloning and Stem Cells, 2007, 9, 17-20.	2.6	11
171	Ubiquitin C-Terminal Hydrolase-Activity Is Involved in Sperm Acrosomal Function and Anti-Polyspermy Defense During Porcine Fertilization1. Biology of Reproduction, 2007, 77, 780-793.	2.7	84
172	Premature Estrogen Exposure Alters Endometrial Gene Expression to Disrupt Pregnancy in the Pig. Endocrinology, 2007, 148, 4761-4773.	2.8	48
173	Expression Levels of Growth-Regulating Imprinted Genes in Cloned Piglets. Cloning and Stem Cells, 2007, 9, 97-106.	2.6	25
174	Nuclear Remodeling and Nuclear Reprogramming for Making Transgenic Pigs by Nuclear Transfer. , 2007, 591, 1-13.		22
175	Development and calcium level changes in pre-implantation porcine nuclear transfer embryos activated with 6-DMAP after fusion. Molecular Reproduction and Development, 2007, 74, 1158-1164.	2.0	15
176	Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer. Molecular Reproduction and Development, 2007, 74, 35-41.	2.0	16
177	Heat stressâ€induced apoptosis in porcine in vitro fertilized and parthenogenetic preimplantationâ€stage embryos. Molecular Reproduction and Development, 2007, 74, 574-581.	2.0	33
178	Concentration and composition of free amino acids and osmolalities of porcine oviductal and uterine fluid and their effects on development of porcine IVF embryos. Molecular Reproduction and Development, 2007, 74, 1228-1235.	2.0	48
179	Morphologic and histologic comparisons between in vivo and nuclear transfer derived porcine embryos. Molecular Reproduction and Development, 2007, 74, 952-960.	2.0	18
180	Remodeling of centrosomes in intraspecies and interspecies nuclear transfer porcine embryos. Cell Cycle, 2007, 6, 1510-20.	2.6	11

#	Article	IF	CITATIONS
181	Multipotent Adult Progenitor Cell Lines Originating from the Peripheral Blood of Green Fluorescent Protein Transgenic Swine. Stem Cells and Development, 2006, 15, 507-522.	2.1	23
182	Mitochondrial distribution and microtubule organization in fertilized and cloned porcine embryos: Implications for developmental potential. Developmental Biology, 2006, 299, 206-220.	2.0	67
183	The nuclear mitotic apparatus (NuMA) protein is contributed by the donor cell nucleus in cloned porcine embryos. Frontiers in Bioscience - Landmark, 2006, 11, 1945.	3.0	26
184	Translocation of Mitochondria in Cloned Porcine Embryos. Microscopy and Microanalysis, 2006, 12, 6-7.	0.4	2
185	Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 2006, 24, 435-436.	17.5	323
186	Developmental competence of porcine parthenogenetic embryos relative to embryonic chromosomal abnormalities. Molecular Reproduction and Development, 2006, 73, 77-82.	2.0	28
187	Development and apoptosis of pre-implantation porcine nuclear transfer embryos activated with different combination of chemicals. Molecular Reproduction and Development, 2006, 73, 1094-1101.	2.0	37
188	Production of a transgenic piglet by a sperm injection technique in which no chemical or physical treatments were used for oocytes or sperm. Molecular Reproduction and Development, 2006, 73, 595-599.	2.0	48
189	Cloned transgenic heart-healthy pork?. Transgenic Research, 2006, 15, 405-407.	2.4	16
190	Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Research, 2006, 15, 739-750.	2.4	57
191	Osteopontin Reduces Polyspermy During In Vitro Fertilization of Porcine Oocytes1. Biology of Reproduction, 2006, 75, 726-733.	2.7	90
192	Cloned Transgenic Swine Via In Vitro Production and Cryopreservation1. Biology of Reproduction, 2006, 75, 226-230.	2.7	69
193	Luteinization of porcine preovulatory follicles leads to systematic changes in follicular gene expression. Reproduction, 2006, 132, 133-145.	2.6	40
194	Neurogenic peripheral bloodâ€derived adult stem cells. FASEB Journal, 2006, 20, A1087.	0.5	0
195	Angiogenic peripheral bloodâ€derived adult stem cells. FASEB Journal, 2006, 20, A633.	0.5	0
196	Fragmentation and development of preimplantation porcine embryos derived by parthenogenetic activation and nuclear transfer. Molecular Reproduction and Development, 2005, 71, 159-165.	2.0	19
197	Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes. Reproduction, 2005, 129, 269-282.	2.6	30
198	Highly efficient and reliable chemically assisted enucleation method for handmade cloning in cattle. Reproduction, Fertility and Development, 2005, 17, 791.	0.4	31

#	Article	IF	CITATIONS
199	Transcriptional Profiling of Pig Embryogenesis by Using a 15-K Member Unigene Set Specific for Pig Reproductive Tissues and Embryos1. Biology of Reproduction, 2005, 72, 1437-1451.	2.7	125
200	The significance of mitochondria for embryo development in cloned farm animals. Mitochondrion, 2005, 5, 303-321.	3.4	42
201	Evaluation of the acute phase response in cloned pigs following a lipopolysaccharide challenge. Domestic Animal Endocrinology, 2005, 29, 564-572.	1.6	35
202	Effect of methyl-β-cyclodextrin treatment of pig spermatozoa on in vitro fertilization and embryo development in the absence or presence of caffeine. Theriogenology, 2005, 64, 1913-1927.	2.1	16
203	A Method for Producing Cloned Pigs by Using Somatic Cells as Donors. , 2004, 254, 149-164.		12
204	Regulation of Prohibitin Expression During Follicular Development and Atresia in the Mammalian Ovary1. Biology of Reproduction, 2004, 71, 282-290.	2.7	43
205	Large-Scale Generation and Analysis of Expressed Sequence Tags from Porcine Ovary1. Biology of Reproduction, 2004, 71, 1991-2002.	2.7	19
206	Developmental Expression of 2489 Gene Clusters During Pig Embryogenesis: An Expressed Sequence Tag Project1. Biology of Reproduction, 2004, 71, 1230-1243.	2.7	53
207	Telomere Lengths in Cloned Transgenic Pigs1. Biology of Reproduction, 2004, 70, 1589-1593.	2.7	57
208	Production of Â-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7335-7340.	7.1	418
209	Nuclear remodeling after SCNT: a contractor's nightmare. Trends in Biotechnology, 2004, 22, 205-208.	9.3	22
210	Cloning pigs as organ donors for humans. IEEE Engineering in Medicine and Biology Magazine, 2004, 23, 37-42.	0.8	2
211	Apoptosis in Parthenogenetic Preimplantation Porcine Embryos1. Biology of Reproduction, 2004, 70, 1644-1649.	2.7	78
212	Wildlife conservation and reproductive cloning. Reproduction, 2004, 127, 317-324.	2.6	84
213	In vitro development of preimplantation porcine nuclear transfer embryos cultured in different media and gas atmospheres. Theriogenology, 2004, 61, 1125-1135.	2.1	88
214	Birth of piglets by in vitro fertilization of zona-free porcine oocytes. Theriogenology, 2004, 62, 1544-1556.	2.1	29
215	Successful nonsurgical deep uterine embryo transfer in pigs. Theriogenology, 2004, 61, 137-146.	2.1	65
216	Nuclear Remodeling and Reprogramming in Transgenic Pig Production. Experimental Biology and Medicine, 2004, 229, 1120-1126.	2.4	31

#	Article	IF	CITATIONS
217	Cleavage stage porcine embryos may have differing developmental requirements for karyopherins ?2 and ?3. Molecular Reproduction and Development, 2003, 64, 292-301.	2.0	30
218	EST-based gene discovery in pig: virtual expression patterns and comparative mapping to human. Mammalian Genome, 2003, 14, 565-579.	2.2	54
219	Creating genetically modified pigs by using nuclear transfer. Reproductive Biology and Endocrinology, 2003, 1, 82.	3.3	49
220	Transgenic swine for biomedicine and agriculture. Theriogenology, 2003, 59, 115-123.	2.1	180
221	Production of Cloned Pigs by Using Somatic Cells as Donors. Cloning and Stem Cells, 2003, 5, 233-241.	2.6	149
222	Apoptosis and In Vitro Development of Preimplantation Porcine Embryos Derived In Vitro or by Nuclear Transfer1. Biology of Reproduction, 2003, 69, 501-507.	2.7	100
223	Regulation of Cytoskeletal Functions in Pig Oocytes. Microscopy and Microanalysis, 2003, 9, 1200-1201.	0.4	Ο
224	Phenotyping of Transgenic Cloned Piglets. Cloning and Stem Cells, 2002, 4, 131-145.	2.6	88
225	Effects of Culture Medium, Serum Type, and Various Concentrations of Follicle-Stimulating Hormone on Porcine Preantral Follicular Development and Antrum Formation In Vitro1. Biology of Reproduction, 2002, 67, 1197-1203.	2.7	72
226	Cyclin B1 levels in the porcine 4-cell stage embryo. Zygote, 2002, 10, 79-84.	1.1	2
227	High Developmental Competence of Pig Oocytes after Meiotic Inhibition with a Specific M-Phase Promoting Factor Kinase Inhibitor, Butyrolactone II. Biology of Reproduction, 2002, 67, 170-177.	2.7	66
228	Capacitative Calcium Entry Mechanism in Porcine Oocytes1. Biology of Reproduction, 2002, 66, 667-674.	2.7	31
229	Mosaic Gene Expression in Nuclear Transfer-Derived Embryos and the Production of Cloned Transgenic Pigs from Ear-Derived Fibroblasts1. Biology of Reproduction, 2002, 66, 1001-1005.	2.7	123
230	Production of alpha -1,3-Galactosyltransferase Knockout Pigs by Nuclear Transfer Cloning. Science, 2002, 295, 1089-1092.	12.6	1,248
231	Progress in producing knockout models for xenotransplantation by nuclear transfer. Annals of Medicine, 2002, 34, 501-506.	3.8	25
232	Na+/Ca2+ Exchanger in Porcine Oocytes1. Biology of Reproduction, 2002, 67, 1133-1139.	2.7	14
233	CRM1-Mediated Nuclear Export Is Present During Porcine Embryogenesis, but Is Not Required for Early Cleavage1. Biology of Reproduction, 2002, 67, 814-819.	2.7	11
234	Regulation of Mitogen-Activated Protein Kinase Phosphorylation, Microtubule Organization, Chromatin Behavior, and Cell Cycle Progression by Protein Phosphatases During Pig Oocyte Maturation and Fertilization In Vitro1. Biology of Reproduction, 2002, 66, 580-588.	2.7	82

#	Article	IF	CITATIONS
235	Effect of elevated Ca2+ concentration in fusion/activation medium on the fusion and development of porcine fetal fibroblast nuclear transfer embryos. Molecular Reproduction and Development, 2002, 61, 488-492.	2.0	36
236	Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Molecular Reproduction and Development, 2002, 62, 300-306.	2.0	147
237	Nuclear Transfer in Swine. , 2002, , 367-374.		0
238	Synchronization of porcine fetal fibroblast cells with topoisomerase-inhibitor hoechst 33342. Animal Reproduction Science, 2001, 66, 109-116.	1.5	11
239	Development and expression of the green fluorescent protein in porcine embryos derived from nuclear transfer of transgenic granulosa-derived cells. Animal Reproduction Science, 2001, 68, 111-120.	1.5	36
240	PRODUCTION OF NUCLEAR TRANSFER-DERIVED SWINE THAT EXPRESS THE ENHANCED GREEN FLUORESCENT PROTEIN. Animal Biotechnology, 2001, 12, 173-181.	1.5	171
241	TRANSGENIC PIGS PRODUCED USING IN VITRO MATURED OOCYTES INFECTED WITH A RETROVIRAL VECTOR. Animal Biotechnology, 2001, 12, 205-214.	1.5	99
242	Constructing cDNA Libraries with Fewer Clones that Contain Long poly(dA) Tails. BioTechniques, 2001, 31, 38-42.	1.8	13
243	Radiation hybrid comparative mapping between human chromosome 17 and porcine chromosome 12 demonstrates conservation of gene order. Animal Genetics, 2001, 32, 205-209.	1.7	8
244	Effect of epidermal growth factor on preimplantation development and its receptor expression in porcine embryos. Molecular Reproduction and Development, 2001, 60, 457-462.	2.0	41
245	Microtubule assembly after treatment of pig oocytes with taxol: Correlation with chromosomes, ?-tubulin, and MAP kinase. Molecular Reproduction and Development, 2001, 60, 481-490.	2.0	49
246	Inhibitors of mitochondrial ATP production at the time of compaction improve development of in vitro produced porcine embryos. Molecular Reproduction and Development, 2001, 58, 39-44.	2.0	41
247	Cytoplasmic changes in relation to nuclear maturation and early embryo developmental potential of porcine oocytes: Effects of gonadotropins, cumulus cells, follicular size, and protein synthesis inhibition. Molecular Reproduction and Development, 2001, 59, 192-198.	2.0	117
248	Porcine oocyte activation: Differing roles of calcium and pH. Molecular Reproduction and Development, 2001, 59, 227-234.	2.0	24
249	Degradation of maternal cdc25c during the maternal to zygotic transition is dependent upon embryonic transcription. Molecular Reproduction and Development, 2001, 60, 181-188.	2.0	24
250	Feasibility of Producing Porcine Nuclear Transfer Embryos by Using G2/M-Stage Fetal Fibroblasts as Donors1. Biology of Reproduction, 2001, 65, 1558-1564.	2.7	51
251	Developmental Potential of Porcine Nuclear Transfer Embryos Derived from Transgenic Fetal Fibroblasts Infected with the Gene for the Green Fluorescent Protein: Comparison of Different Fusion/Activation Conditions1. Biology of Reproduction, 2001, 65, 1681-1685.	2.7	44
252	Expression of pregnancy-associated glycoprotein 1 and 2 genes in in vivo, in vitro and parthenogenetically derived preimplantation pig embryos. Zygote, 2001, 9, 245-250.	1.1	10

#	Article	IF	CITATIONS
253	Dynamic Events Are Differently Mediated by Microfilaments, Microtubules, and Mitogen-Activated Protein Kinase During Porcine Oocyte Maturation and Fertilization In Vitro1. Biology of Reproduction, 2001, 64, 879-889.	2.7	122
254	Effect of incubation temperature on <i>in vitro</i> maturation of porcine oocytes: nuclear maturation, fertilisation and developmental competence. Zygote, 2001, 9, 331-337.	1.1	21
255	Clonal Lines of Transgenic Fibroblast Cells Derived from the Same Fetus Result in Different Development When Used for Nuclear Transfer in Pigs1. Biology of Reproduction, 2001, 64, 1695-1698.	2.7	74
256	Development of porcine embryos and offspring after intracytoplasmic sperm injection with liposome transfected or non-transfected sperm into <i>in vitro</i> matured oocytes. Zygote, 2001, 9, 339-346.	1.1	77
257	Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction, 2001, 122, 155-163.	2.6	244
258	Nuclear Modifications and Reprogramming After Nuclear Transfer. , 2001, , 227-238.		0
259	Actin filament distribution in blocked and developing pig embryos. Zygote, 2000, 8, 353-358.	1.1	16
260	Optimisation of porcine oocyte activation following nuclear transfer. Zygote, 2000, 8, 69-77.	1.1	32
261	Production of transgenic porcine blastocysts by nuclear transfer. Molecular Reproduction and Development, 2000, 56, 145-148.	2.0	28
262	Porcine oocyte activation induced by a cytosolic sperm factor. Molecular Reproduction and Development, 2000, 57, 290-295.	2.0	40
263	Antioxidants Stimulate Germinal Vesicle Breakdown, But Inhibit Chromosome Formation And Spindle Assembly In Porcine Oocytes. Microscopy and Microanalysis, 2000, 6, 964-965.	0.4	0
264	Intracellular pH increase accompanies parthenogenetic activation of porcine, bovine and murine oocytes. Reproduction, Fertility and Development, 2000, 12, 201.	0.4	5
265	Mechanism of Intracellular pH Increase During Parthenogenetic Activation of In Vitro Matured Porcine Oocytes1. Biology of Reproduction, 2000, 63, 488-492.	2.7	17
266	Polymerization of Nonfilamentous Actin into Microfilaments Is an Important Process for Porcine Oocyte Maturation and Early Embryo Development1. Biology of Reproduction, 2000, 62, 1177-1183.	2.7	65
267	CLONING: Pigs Is Pigs. Science, 2000, 289, 1886-1887.	12.6	33
268	Development and viability of pig oocytes matured in a protein-free medium containing epidermal growth factor. Theriogenology, 2000, 54, 787-797.	2.1	134
269	Changes in the Structure of Nuclei after Transfer to Oocytes. Cloning, 2000, 2, 117-122.	2.1	14
270	Pronuclear Location Before the First Cell Division Determines Ploidy of Polyspermic Pig Embryos1. Biology of Reproduction, 1999, 61, 1340-1346.	2.7	94

#	Article	IF	CITATIONS
271	Cyclin B1 Transcript Quantitation Over the Maternal to Zygotic Transition in Both In Vivo- and In Vitro-Derived 4-Cell Porcine Embryos1. Biology of Reproduction, 1999, 61, 1460-1467.	2.7	38
272	Morphologic Evaluation and Actin Filament Distribution in Porcine Embryos Produced In Vitro and In Vivo1. Biology of Reproduction, 1999, 60, 1020-1028.	2.7	119
273	Growth Retardation of Inner Cell Mass Cells in Polyspermic Porcine Embryos Produced In Vitro1. Biology of Reproduction, 1999, 60, 1110-1113.	2.7	93
274	Calcium Release and Subsequent Development Induced by Modification of Sulfhydryl Groups in Porcine Oocytes1. Biology of Reproduction, 1999, 60, 1384-1391.	2.7	21
275	Effect of Myosin Light Chain Kinase, Protein Kinase A, and Protein Kinase C Inhibition on Porcine Oocyte Activation1. Biology of Reproduction, 1999, 61, 111-119.	2.7	17
276	A Protein Tyrosine Phosphatase Inhibitor, Sodium Orthovanadate, Causes Parthenogenetic Activation of Pig Oocytes via an Increase in Protein Tyrosine Kinase Activity1. Biology of Reproduction, 1999, 61, 900-905.	2.7	20
277	Cell Cycle Analysis of Cultured Porcine Mammary Cells. Cloning, 1999, 1, 17-24.	2.1	35
278	Development of Pig Embryos by Nuclear Transfer of Cultured Fibroblast Cells. Cloning, 1999, 1, 55-62.	2.1	47
279	Parthenogenetic Activation of Porcine Oocytes After Nuclear Transfer. Cloning, 1999, 1, 101-109.	2.1	25
280	Activation of porcine oocytes with calcium ionophore: Effects of extracellular calcium. Molecular Reproduction and Development, 1999, 53, 99-107.	2.0	33
281	Flow Cytometric Cell Cycle Analysis of Cultured Porcine Fetal Fibroblast Cells1. Biology of Reproduction, 1999, 60, 1013-1019.	2.7	173
282	Development of pig embryos reconstructed by microinjection of cultured fetal fibroblast cells into in vitro matured oocytes. Animal Reproduction Science, 1999, 56, 133-141.	1.5	51
283	Development of the techniques for nuclear transfer in pigs. Theriogenology, 1999, 51, 487-498.	2.1	44
284	How do poly-spermic pig eggs develop in vitro and in vivo?. Theriogenology, 1999, 51, 184.	2.1	0
285	Epidermal growth factor can enhance the developmental competence of pig oocytes matured in vitro under protein-free culture conditions. Theriogenology, 1999, 51, 365.	2.1	6
286	Time course of cortical and zona reactions of pig oocytes upon intracellular calcium increase induced by thimerosal. Zygote, 1999, 7, 79-86.	1.1	29
287	Glutathione content and embryo development after in vitro fertilisation of pig oocytes matured in the presence of a thiol compound and various concentrations of cysteine. Zygote, 1999, 7, 203-210.	1.1	57
288	Morphologic comparison of ovulated and in vitro-matured porcine oocytes, with particular reference to polyspermy after in vitro fertilization. Molecular Reproduction and Development, 1998, 49, 308-316.	2.0	122

#	Article	IF	CITATIONS
289	Functional analysis of activation of porcine oocytes by spermatozoa, calcium ionophore, and electrical pulse. Molecular Reproduction and Development, 1998, 51, 346-353.	2.0	51
290	Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Molecular Reproduction and Development, 1998, 51, 395-401.	2.0	104
291	Presence of β-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology, 1998, 50, 747-756.	2.1	141
292	Maturation in Vitro of Pig Oocytes in Protein-Free Culture Media: Fertilization and Subsequent Embryo Development in Vitro1. Biology of Reproduction, 1998, 58, 1316-1320.	2.7	170
293	Practical considerations for the in vitro production of pig embryos. Theriogenology, 1998, 49, 23-32.	2.1	57
294	Development of Pig Oocytes Activated by Stimulation of an Exogenous G Protein-Coupled Receptor1. Biology of Reproduction, 1998, 59, 655-660.	2.7	13
295	Strategies for activating nuclear transfer oocytes. Reproduction, Fertility and Development, 1998, 10, 599.	0.4	43
296	Parthenogenetic Activation of Pig Oocytes with Calcium Ionophore and the Block to Sperm Penetration after Activation1. Biology of Reproduction, 1998, 58, 1357-1366.	2.7	58
297	Development of Early Porcine Embryos In Vitro and In Vivo1. Biology of Reproduction, 1998, 59, 451-455.	2.7	239
298	Parthenogenic Development of in Vitro-Matured, in Vivo-Cultured Porcine Oocytes Beyond Blastocyst1. Biology of Reproduction, 1997, 56, 544-548.	2.7	39
299	Complete Activation of Porcine Oocytes Induced by the Sulfhydryl Reagent, Thimerosall1. Biology of Reproduction, 1997, 57, 1123-1127.	2.7	92
300	Activation of Porcine Oocytes Via an Exogenously Introduced Rat Muscarinic M1 Receptor1. Biology of Reproduction, 1997, 57, 85-91.	2.7	20
301	Developmental Changes in the Intracellular Ca 2+ Release Mechanisms in Porcine Oocytes1. Biology of Reproduction, 1997, 56, 921-930.	2.7	88
302	Reproductive measurements in Sinclair and NIH miniature pigs: A retrospective analysis. Theriogenology, 1997, 47, 433-440.	2.1	5
303	Parthenogenetic activation of pig eggs by exposure to protein kinase inhibitors. Reproduction, Fertility and Development, 1997, 9, 539.	0.4	19
304	Decondensation of hamster chromosomes in the nuclei of 1-cell stage mice embryo following chromosome microinjection. Theriogenology, 1996, 45, 336.	2.1	1
305	Microtubule and microfilament dynamics in porcine oocytes during meiotic maturation. Molecular Reproduction and Development, 1996, 43, 248-255.	2.0	112
306	Cytoskeletal alteration in aged porcine oocytes and parthenogenesis. Molecular Reproduction and Development, 1996, 43, 513-518.	2.0	99

#	Article	IF	CITATIONS
307	Characterization of DNA synthesis during the 2-cell stage and the production of tetraploid chimeric pig embryos. Molecular Reproduction and Development, 1996, 45, 38-42.	2.0	19
308	γ-glutamyl transpeptidase of spermatozoa may decrease oocyte glutathione content at fertilization in pigs. Molecular Reproduction and Development, 1996, 45, 485-490.	2.0	6
309	Effects of Injecting Calcium Chloride into in Vitro-Matured Porcine Oocytes1. Biology of Reproduction, 1996, 54, 316-322.	2.7	49
310	Progress in Cloning Embryos from Domesticated Livestock. Experimental Biology and Medicine, 1996, 212, 38-43.	2.4	16
311	Differential effects of protein synthesis inhibitors on porcine oocyte activation. Molecular Reproduction and Development, 1995, 41, 70-75.	2.0	71
312	Carry-over of mRNA during nuclear transfer in pigs. Reproduction, Nutrition, Development, 1995, 35, 313-318.	1.9	10
313	Evaluation of response to hormonal therapy in prepubertal gilts of different genetic lines Journal of Animal Science, 1995, 73, 3062.	0.5	20
314	Parthenogenetic Activation of Porcine Oocytes with Guanosine-5′-O-(3′-Thiotriphosphate)1. Biology of Reproduction, 1995, 52, 753-758.	2.7	30
315	Parthenogenic Activation of Pig Oocytes by Protein Kinase Inhibition1. Biology of Reproduction, 1995, 53, 270-275.	2.7	47
316	In vitro development of embryos from sinclair miniature pigs: A preliminary report. Theriogenology, 1995, 43, 1001-1007.	2.1	31
317	Microtubule and microfilament dynamics in porcine oocytes during in vitro maturation. Theriogenology, 1995, 43, 249.	2.1	1
318	Okadaic acid increases rate of activation of electrically activated In vitro matured porcine oocytes. Theriogenology, 1993, 39, 296.	2.1	3
319	Timing of the transition from maternal to embryonic control in the 4-cell porcine embryo. Theriogenology, 1993, 39, 305.	2.1	1
320	Processing of nuclei transplanted into in vitro matured porcine oocytes. Theriogenology, 1993, 39, 322.	2.1	0
321	Pig oocyte activation and processing of transplanted nuclei. Theriogenology, 1993, 39, 329.	2.1	1
322	Cell-to-cell coupling in early-stage bovine embryos: A preliminary report. Theriogenology, 1993, 39, 561-567.	2.1	30
323	Diacylglycerol-enhanced electrical activation of porcine oocytes matured in vitro. Theriogenology, 1993, 40, 257-266.	2.1	8
324	Characterization of Deoxyribonucleic Acid Synthesis and the Transition from Maternal to Embryonic Control in the 4-Cell Porcine Embryo1. Biology of Reproduction, 1992, 47, 1118-1125.	2.7	49

#	Article	IF	CITATIONS
325	In vitro development of nuclear transplant pig embryos. Theriogenology, 1992, 37, 309.	2.1	10
326	Developmental regulation ofan snRNP core protein epitope during pig embryogenesis and after nuclear transfer for cloning. Molecular Reproduction and Development, 1992, 33, 119-123.	2.0	46
327	Construction of the nuclear matrix at the transition from maternal to zygotic control of development in the mouse: An immunocytochemical study. Molecular Reproduction and Development, 1992, 32, 203-208.	2.0	20
328	Activation of porcine oocytes matured. Theriogenology, 1991, 35, 258.	2.1	1
329	Culture of porcine embryos from the one- and two-cell stage to the blastocyst stage in sheep oviducts. Theriogenology, 1991, 35, 1147-1151.	2.1	24
330	Cytoplasmic modification of the nuclear lamina during pronuclear-like transformation of mouse blastomere nuclei. Mechanisms of Development, 1991, 35, 103-111.	1.7	31
331	Response of porcine oocytes to electrical and chemical activation during maturation in vitro. Molecular Reproduction and Development, 1991, 28, 70-73.	2.0	61
332	Genomic potential in mammals. Differentiation, 1991, 48, 1-8.	1.9	38
333	The Transition from Maternal to Zygotic Control of Development Occurs during the 4-Cell Stage in the Domestic Pig, Sus Scrofa: Quantitative and Qualitative Aspects of Protein Synthesis1. Biology of Reproduction, 1991, 44, 62-68.	2.7	150
334	Nuclear Transfer in Mammalian Embryos. International Review of Cytology, 1990, 120, 169-190.	6.2	24
335	Nuclear Transplantation in Early Pig Embryos1. Biology of Reproduction, 1989, 41, 414-418.	2.7	288
336	Preimplantation mammalian aggregation and injection chimeras. Gamete Research, 1989, 22, 233-247.	1.7	12
337	The small nuclear RNAs for pre-mRNA splicing are coordinately regulated during oocyte maturation and early embryogenesis in the mouse. Development (Cambridge), 1989, 106, 325-334.	2.5	44
338	Nuclear transplantation in the early porcine embryo. Theriogenology, 1988, 29, 290.	2.1	10
339	Nuclear Transplantation in the Bovine Embryo: Assessment of Donor Nuclei and Recipient Oocyt14. Biology of Reproduction, 1987, 37, 859-866.	2.7	377
340	Multiplication of bovine embryos. Theriogenology, 1987, 27, 209.	2.1	6
341	Evaluation of cryopreservation techniques for bovine embryos. Theriogenology, 1987, 28, 195-204.	2.1	16
342	Cryopreservation of isolated murine blastomeres. Theriogenology, 1985, 23, 219.	2.1	2

#	Article	IF	CITATIONS
343	The effect of hydrogen ion concentration on the freeze-thaw survival of mouse embryos. Theriogenology, 1984, 21, 255.	2.1	1
344	Animal Cloning. , 0, , 237-262.		0
345	Gene Editing to Create Agricultural and Biomedical Swine Models. , 0, , 132-149.		0