Johan De Rooij

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/527200/publications.pdf Version: 2024-02-01

IOHAN DE ROOIL

#	Article	IF	CITATIONS
1	Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment. Oncogene, 2022, 41, 2458-2469.	5.9	47
2	Vinculin controls endothelial cell junction dynamics during vascular lumen formation. Cell Reports, 2022, 39, 110658.	6.4	20
3	An asymmetric junctional mechanoresponse coordinates mitotic rounding with epithelial integrity. Journal of Cell Biology, 2021, 220, .	5.2	22
4	Force-induced changes of $\hat{I}\pm$ -catenin conformation stabilize vascular junctions independently of vinculin. Journal of Cell Science, 2021, 134, .	2.0	9
5	Cadherin mechanotransduction in leader-follower cell specification during collective migration. Experimental Cell Research, 2019, 376, 86-91.	2.6	45
6	Force transduction by cadherin adhesions in morphogenesis. F1000Research, 2019, 8, 1044.	1.6	43
7	Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nature Communications, 2018, 9, 792.	12.8	40
8	αEâ€catenin is a candidate tumor suppressor for the development of Eâ€cadherinâ€expressing lobularâ€ŧype breast cancer. Journal of Pathology, 2018, 245, 456-467.	4.5	34
9	Resolving the cadherin–F-actin connection. Nature Cell Biology, 2017, 19, 14-16.	10.3	14
10	Zygotic vinculin is not essential for embryonic development in zebrafish. PLoS ONE, 2017, 12, e0182278.	2.5	20
11	The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nature Communications, 2016, 7, 12210.	12.8	40
12	Converging and Unique Mechanisms of Mechanotransduction at Adhesion Sites. Trends in Cell Biology, 2016, 26, 612-623.	7.9	63
13	αE-catenin-dependent mechanotransduction is essential for proper convergent extension in zebrafish. Biology Open, 2016, 5, 1461-1472.	1.2	28
14	VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the α-catenin-vinculin module. Scientific Reports, 2015, 5, 17225.	3.3	56
15	Quantitative imaging of focal adhesion dynamics and their regulation by HGF and Rap1 signaling. Experimental Cell Research, 2015, 330, 382-397.	2.6	13
16	Mechanical control of the endothelial barrier. Cell and Tissue Research, 2014, 355, 545-555.	2.9	64
17	Cadherin adhesion controlled by cortical actin dynamics. Nature Cell Biology, 2014, 16, 508-510.	10.3	21
18	Mechanosensitive systems at the cadherin–F-actin interface. Journal of Cell Science, 2013, 126, 403-413.	2.0	194

Johan De Rooij

#	Article	IF	CITATIONS
19	Mechanotransduction: Vinculin Provides Stability when Tension Rises. Current Biology, 2013, 23, R159-R161.	3.9	23
20	Cadherin mechanotransduction in tissue remodeling. Cellular and Molecular Life Sciences, 2013, 70, 4101-4116.	5.4	46
21	Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. Journal of Cell Biology, 2012, 196, 641-652.	5.2	411
22	Vinculin-dependent Cadherin mechanosensing regulates efficient epithelial barrier formation. Biology Open, 2012, 1, 1128-1140.	1.2	102
23	Mechanotransduction at cadherin-mediated adhesions. Current Opinion in Cell Biology, 2011, 23, 523-530.	5.4	142
24	Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II–dependent manner. Journal of Cell Biology, 2010, 189, 1107-1115.	5.2	569
25	Rap1 signalling: adhering to new models. Nature Reviews Molecular Cell Biology, 2001, 2, 369-377.	37.0	574