
Zhe Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5270217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene–Cellulose Paper Flexible Supercapacitors. Advanced Energy Materials, 2011, 1, 917-922.	19.5	831
2	Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 415.	12.8	527
3	Electrochemical CO ₂ Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 8076-8079.	13.7	450
4	A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 2016, 7, 10771.	12.8	418
5	A Corrosionâ€Resistant and Dendriteâ€Free Zinc Metal Anode in Aqueous Systems. Small, 2020, 16, e2001736.	10.0	354
6	Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Letters, 2021, 6, 395-403.	17.4	340
7	A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 2022, 5, 205-213.	23.7	277
8	Ternary Hybrid Material for High-Performance Lithium–Sulfur Battery. Journal of the American Chemical Society, 2015, 137, 12946-12953.	13.7	253
9	Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis. Nano Letters, 2015, 15, 7704-7710.	9.1	233
10	Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy, 2015, 15, 642-653.	16.0	172
11	Electroreduction of CO ₂ Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center. ACS Central Science, 2017, 3, 847-852.	11.3	165
12	Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chemical Science, 2017, 8, 4285-4291.	7.4	164
13	A Selfâ€Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	19.5	164
14	Controlled Electrochemical Charge Injection to Maximize the Energy Density of Supercapacitors. Angewandte Chemie - International Edition, 2013, 52, 3722-3725.	13.8	160
15	Graphitic Carbon Nitride Induced Microâ€Electric Field for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1803186.	19.5	147
16	Strong Metal–Phosphide Interactions in Core–Shell Geometry for Enhanced Electrocatalysis. Nano Letters, 2017, 17, 2057-2063.	9.1	145
17	Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon, 2014, 67, 500-507.	10.3	137
18	An aqueous dissolved polysulfide cathode for lithium–sulfur batteries. Energy and Environmental Science, 2014, 7, 3307-3312.	30.8	131

ZHE WENG

#	Article	IF	CITATIONS
19	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 13135-13139.	13.8	126
20	Ultrathin dendrimer–graphene oxide composite film for stable cycling lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3578-3583.	7.1	90
21	Two-dimensional materials for lithium/sodium-ion capacitors. Materials Today Energy, 2019, 11, 30-45.	4.7	88
22	Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2017, 9, 28519-28526.	8.0	83
23	Constructing a Highâ€Strength Solid Electrolyte Layer by In Vivo Alloying with Aluminum for an Ultrahighâ€Rate Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 1907343.	14.9	83
24	Unlocking Bifunctional Electrocatalytic Activity for CO ₂ Reduction Reaction by Win-Win Metal–Oxide Cooperation. ACS Energy Letters, 2018, 3, 2816-2822.	17.4	76
25	Suppressing Al dendrite growth towards a long-life Al-metal battery. Energy Storage Materials, 2021, 34, 194-202.	18.0	54
26	Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nature Communications, 2022, 13, .	12.8	47
27	Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energy Storage Materials, 2022, 50, 641-647.	18.0	47
28	Ferroceneâ€Promoted Long ycle Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 14818-14822.	13.8	46
29	Electrode thickness matching for achieving high-volumetric-performance lithium-ion capacitors. Energy Storage Materials, 2019, 18, 133-138.	18.0	43
30	Liquid Metal Remedies Silicon Microparticulates Toward Highly Stable and Superior Volumetric Lithium Storage. Advanced Energy Materials, 2022, 12, .	19.5	42
31	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie, 2017, 129, 13315-13319.	2.0	38
32	The effect of carbon particle morphology on the electrochemical properties of nanocarbon/polyaniline composites in supercapacitors. New Carbon Materials, 2011, 26, 180-186.	6.1	34
33	Synthesis and characterization of ZnO nanostructures by two-step oxidation of Zn nano- and microparticles. Journal of Crystal Growth, 2006, 289, 663-669.	1.5	33
34	Solid solution nitride/carbon nanotube hybrids enhance electrocatalysis of oxygen in zinc-air batteries. Energy Storage Materials, 2018, 15, 380-387.	18.0	32
35	Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2020, 8, 461-469.	10.3	30
36	A smart self-regenerative lithium ion supercapacitor with a real-time safety monitor. Energy Storage Materials, 2015, 1, 146-151.	18.0	28

ZHE WENG

#	Article	IF	CITATIONS
37	Building Carbonâ€Based Versatile Scaffolds on the Electrode Surface to Boost Capacitive Performance for Fiber Pseudocapacitors. Small, 2019, 15, e1900721.	10.0	26
38	A Targeted Functional Design for Highly Efficient and Stable Cathodes for Rechargeable Liâ€lon Batteries. Advanced Functional Materials, 2017, 27, 1604903.	14.9	22
39	Ferroceneâ€Promoted Long ycle Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 15038-15042.	2.0	11
40	Interface engineering of earth-abundant Cu/In(OH)3 catalysts towards electrochemical reduction of CO2 favoring CO selectivity. Journal of CO2 Utilization, 2021, 46, 101470.	6.8	10
41	Boosting carbon monoxide production during CO2 reduction reaction via Cu-Sb2O3 interface cooperation. Journal of Colloid and Interface Science, 2021, 601, 661-668.	9.4	10
42	An alternative means of advanced energy storage by electrochemical modification. JPhys Energy, 2020, 2, 021006.	5.3	0