
## Valérie Simonneaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5269643/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Age-dependent change of RFRP-3 neuron numbers and innervation in female mice. Neuropeptides, 2022, 92, 102224.                                                                                                                                                    | 2.2 | 2         |
| 2  | <scp>GnRH</scp> and the photoperiodic control of seasonal reproduction: Delegating the task to kisspeptin and <scp>RFRP</scp> â€3. Journal of Neuroendocrinology, 2022, 34, e13124.                                                                               | 2.6 | 13        |
| 3  | Environmental disruption of reproductive rhythms. Frontiers in Neuroendocrinology, 2022, 66, 100990.                                                                                                                                                              | 5.2 | 14        |
| 4  | A refined method to monitor arousal from hibernation in the European hamster. BMC Veterinary<br>Research, 2021, 17, 14.                                                                                                                                           | 1.9 | 1         |
| 5  | Daily and Estral Regulation of RFRP-3 Neurons in the Female Mice. Journal of Circadian Rhythms, 2021, 19, 4.                                                                                                                                                      | 1.3 | 8         |
| 6  | Identification of an <i>N</i> -acylated- <sup>D</sup> Arg-Leu-NH <sub>2</sub> Dipeptide as a Highly<br>Selective Neuropeptide FF1 Receptor Antagonist That Potently Prevents Opioid-Induced Hyperalgesia.<br>Journal of Medicinal Chemistry, 2021, 64, 7555-7564. | 6.4 | 4         |
| 7  | Role of central kisspeptin and RFRPâ€3 in energy metabolism in the male Wistar rat. Journal of<br>Neuroendocrinology, 2021, 33, e12973.                                                                                                                           | 2.6 | 11        |
| 8  | A Kiss to drive rhythms in reproduction. European Journal of Neuroscience, 2020, 51, 509-530.                                                                                                                                                                     | 2.6 | 50        |
| 9  | Individual evaluation of luteinizing hormone in aged C57BL/6ÂJ female mice. GeroScience, 2020, 42, 323-331.                                                                                                                                                       | 4.6 | 8         |
| 10 | The dromedary camel displays annual variation in hypothalamic kisspeptin and Arg–Pheâ€amideâ€related<br>peptideâ€3 according to sex, season, and breeding activity. Journal of Comparative Neurology, 2020, 528,<br>36-51.                                        | 1.6 | 5         |
| 11 | Thyroid hormone receptors are required for the melatoninâ€dependent control of <i>Rfrp</i> gene expression in mice. FASEB Journal, 2020, 34, 12072-12082.                                                                                                         | 0.5 | 11        |
| 12 | RFRP3 increases food intake in a sexâ€dependent manner in the seasonal hamster Phodopus sungorus.<br>Journal of Neuroendocrinology, 2020, 32, e12845.                                                                                                             | 2.6 | 5         |
| 13 | Impact of Circadian Disruption on Female Mice Reproductive Function. Endocrinology, 2020, 161, .                                                                                                                                                                  | 2.8 | 17        |
| 14 | Photoperiodic regulation in a wild-derived mouse strain. Journal of Experimental Biology, 2020, 223, .                                                                                                                                                            | 1.7 | 8         |
| 15 | Functional Implications of RFRP-3 in the Central Control of Daily and Seasonal Rhythms in Reproduction. Frontiers in Endocrinology, 2019, 10, 183.                                                                                                                | 3.5 | 39        |
| 16 | Kisspeptin and <scp>RFRP</scp> 3 modulate body mass in <i>Phodopus sungorus</i> via two different<br>neuroendocrine pathways. Journal of Neuroendocrinology, 2019, 31, e12710.                                                                                    | 2.6 | 17        |
| 17 | Melatonin-independent Photoperiodic Entrainment of the Circannual TSH Rhythm in the Pars Tuberalis of the European Hamster. Journal of Biological Rhythms, 2018, 33, 302-317.                                                                                     | 2.6 | 22        |
| 18 | Neuroendocrine pathways driving daily rhythms in the hypothalamic pituitary gonadal axis of female<br>rodents. Current Opinion in Physiology, 2018, 5, 99-108.                                                                                                    | 1.8 | 9         |

Valérie Simonneaux

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hamster Melatonin Receptors: Cloning and Binding Characterization of MT1 and Attempt to Clone<br>MT2. International Journal of Molecular Sciences, 2018, 19, 1957.                                  | 4.1 | 8         |
| 20 | Gene expression profiling during hibernation in the European hamster. Scientific Reports, 2018, 8, 13167.                                                                                           | 3.3 | 30        |
| 21 | miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock.<br>Cell Reports, 2017, 19, 505-520.                                                              | 6.4 | 45        |
| 22 | RF313, an orally bioavailable neuropeptide FF receptor antagonist, opposes effects of RF-amide-related peptide-3 and opioid-induced hyperalgesia in rodents. Neuropharmacology, 2017, 118, 188-198. | 4.1 | 18        |
| 23 | Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8408-8413.  | 7.1 | 46        |
| 24 | Daily rhythms count for female fertility. Best Practice and Research in Clinical Endocrinology and<br>Metabolism, 2017, 31, 505-519.                                                                | 4.7 | 23        |
| 25 | Downregulation of Deiodinase 3 is the earliest event in photoperiodic and photorefractory activation of the gonadotropic axis in seasonal hamsters. Scientific Reports, 2017, 7, 17739.             | 3.3 | 23        |
| 26 | RFRP Neurons – The Doorway to Understanding Seasonal Reproduction in Mammals. Frontiers in<br>Endocrinology, 2016, 7, 36.                                                                           | 3.5 | 33        |
| 27 | The role of kisspeptin and RFRP in the circadian control of female reproduction. Molecular and Cellular Endocrinology, 2016, 438, 89-99.                                                            | 3.2 | 14        |
| 28 | Roles of RFRP-3 in the daily and seasonal regulation of reproductive activity in female Syrian hamsters. Endocrinology, 2016, 158, en.2016-1689.                                                    | 2.8 | 31        |
| 29 | Development of Dipeptidic <i>h</i> GPR54 Agonists. ChemMedChem, 2016, 11, 2147-2154.                                                                                                                | 3.2 | 6         |
| 30 | Kisspeptin and RFRP-3 differentially regulate food intake and metabolic neuropeptides in the female desert jerboa. Scientific Reports, 2016, 6, 36057.                                              | 3.3 | 40        |
| 31 | Sex differences in the photoperiodic regulation of RFâ€Amide related peptide (RFRP) and its receptor GPR147 in the syrian hamster. Journal of Comparative Neurology, 2016, 524, 1825-1838.          | 1.6 | 31        |
| 32 | Coordinated seasonal regulation of metabolic and reproductive hypothalamic peptides in the desert jerboa. Journal of Comparative Neurology, 2016, 524, 3717-3728.                                   | 1.6 | 19        |
| 33 | A Multi-Oscillatory Circadian System Times Female Reproduction. Frontiers in Endocrinology, 2015, 6, 157.                                                                                           | 3.5 | 43        |
| 34 | Evidence for a Putative Circadian Kiss-Clock in the Hypothalamic AVPV in Female Mice. Endocrinology, 2015, 156, 2999-3011.                                                                          | 2.8 | 43        |
| 35 | Seasonal Regulation of Reproduction in Mammals. , 2015, , 1575-1604.                                                                                                                                |     | 33        |
| 36 | A Circannual Clock Drives Expression of Genes Central for Seasonal Reproduction. Current Biology, 2014, 24, 1500-1506.                                                                              | 3.9 | 109       |

Valérie Simonneaux

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Comparative analysis of kisspeptin-immunoreactivity reveals genuine differences in the hypothalamic<br>Kiss1 systems between rats and mice. Peptides, 2013, 45, 85-90.                            | 2.4 | 43        |
| 38 | Kisspeptins and RFRP-3 Act in Concert to Synchronize Rodent Reproduction with Seasons. Frontiers in Neuroscience, 2013, 7, 22.                                                                    | 2.8 | 74        |
| 39 | TSH restores a summer phenotype in photoinhibited mammals <i>via</i> the RFâ€amides RFRP3 and kisspeptin. FASEB Journal, 2013, 27, 2677-2686.                                                     | 0.5 | 91        |
| 40 | RFRP neurons are critical gatekeepers for the photoperiodic control of reproduction. Frontiers in Endocrinology, 2012, 3, 168.                                                                    | 3.5 | 13        |
| 41 | Stimulatory Effect of RFRP-3 on the Gonadotrophic Axis in the Male Syrian Hamster: The Exception Proves the Rule. Endocrinology, 2012, 153, 1352-1363.                                            | 2.8 | 165       |
| 42 | A kiss for daily and seasonal reproduction. Progress in Brain Research, 2012, 199, 423-437.                                                                                                       | 1.4 | 21        |
| 43 | The Daily Melatonin Pattern in Djungarian Hamsters Depends on the Circadian Phenotype.<br>Chronobiology International, 2011, 28, 873-882.                                                         | 2.0 | 8         |
| 44 | Melatonin Controls Photoperiodic Changes in Tanycyte Vimentin and Neural Cell Adhesion Molecule<br>Expression in the Djungarian Hamster (Phodopus sungorus). Endocrinology, 2011, 152, 3871-3883. | 2.8 | 46        |
| 45 | Naughty Melatonin: How Mothers Tick Off their Fetus. Endocrinology, 2011, 152, 1734-1738.                                                                                                         | 2.8 | 17        |
| 46 | A Noradrenergic Sensitive Endogenous Clock Is Present in the Rat Pineal Gland. Neuroendocrinology,<br>2011, 94, 75-83.                                                                            | 2.5 | 17        |
| 47 | Maturation of kisspeptinergic neurons coincides with puberty onset in male rats. Peptides, 2010, 31, 275-283.                                                                                     | 2.4 | 55        |
| 48 | Endogenous rhythmicity of <i>Bmal1</i> and <i>Revâ€erb</i> α in the hamster pineal gland is not driven by norepinephrine. European Journal of Neuroscience, 2009, 29, 2009-2016.                  | 2.6 | 17        |
| 49 | Comparison of the effects of peripherally administered kisspeptins. Regulatory Peptides, 2009, 152, 95-100.                                                                                       | 1.9 | 64        |
| 50 | Kisspeptin and the seasonal control of reproduction in hamsters. Peptides, 2009, 30, 146-153.                                                                                                     | 2.4 | 90        |
| 51 | The neuroanatomy of the kisspeptin system in the mammalian brain. Peptides, 2009, 30, 26-33.                                                                                                      | 2.4 | 122       |
| 52 | Melatonin Controls Seasonal Breeding by a Network of Hypothalamic Targets. Neuroendocrinology,<br>2009, 90, 1-14.                                                                                 | 2.5 | 82        |
| 53 | RFamide-Related Peptide Gene Is a Melatonin-Driven Photoperiodic Gene. Endocrinology, 2008, 149,<br>902-912.                                                                                      | 2.8 | 181       |
| 54 | Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland. Life Sciences, 2008, 82, 529-535.                                                                         | 4.3 | 28        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | DailyAaâ€natGene Expression in the Camel (Camelus dromedarius) Pineal Gland. Chronobiology<br>International, 2008, 25, 800-807.                                                                                                       | 2.0  | 10        |
| 56 | The circadian clock stops ticking during deep hibernation in the European hamster. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13816-13820.                                           | 7.1  | 121       |
| 57 | Seasonal variations of clock gene expression in the suprachiasmatic nuclei and pars tuberalis of the<br>European hamster (Cricetusâ€∫cricetus). European Journal of Neuroscience, 2007, 25, 1529-1536.                                | 2.6  | 36        |
| 58 | Kisspeptin: A key link to seasonal breeding. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 57-65.                                                                                                                            | 5.7  | 113       |
| 59 | KiSSâ€l: A Likely Candidate for the Photoperiodic Control of Reproduction in Seasonal Breeders.<br>Chronobiology International, 2006, 23, 277-287.                                                                                    | 2.0  | 25        |
| 60 | The localisation of kisspeptin in the rodent brain. Frontiers in Neuroendocrinology, 2006, 27, 63-64.                                                                                                                                 | 5.2  | 2         |
| 61 | Kisspeptin Mediates the Photoperiodic Control of Reproduction in Hamsters. Current Biology, 2006, 16, 1730-1735.                                                                                                                      | 3.9  | 235       |
| 62 | Differential Expression of Activator Protein-1 Proteins in the Pineal Gland of Syrian Hamster and Rat<br>May Explain Species Diversity in Arylalkylamine N-Acetyltransferase Gene Expression. Endocrinology,<br>2006, 147, 5052-5060. | 2.8  | 12        |
| 63 | Melatonin Regulates Type 2 Deiodinase Gene Expression in the Syrian Hamster. Endocrinology, 2006, 147, 4680-4687.                                                                                                                     | 2.8  | 121       |
| 64 | Rat And Syrian Hamster: Two Models for The Regulation ofAANATGene Expression. Chronobiology<br>International, 2006, 23, 351-359.                                                                                                      | 2.0  | 25        |
| 65 | Pineal melatonin synthesis and release are not altered throughout the estrous cycle in female rats.<br>Journal of Pineal Research, 2003, 34, 53-59.                                                                                   | 7.4  | 10        |
| 66 | Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms.<br>European Journal of Neuroscience, 2003, 17, 221-228.                                                                                | 2.6  | 163       |
| 67 | Expression and regulation of Icer mRNA in the Syrian hamster pineal gland. Molecular Brain Research, 2003, 112, 163-169.                                                                                                              | 2.3  | 11        |
| 68 | Generation of the Melatonin Endocrine Message in Mammals: A Review of the Complex Regulation of<br>Melatonin Synthesis by Norepinephrine, Peptides, and Other Pineal Transmitters. Pharmacological<br>Reviews, 2003, 55, 325-395.     | 16.0 | 576       |
| 69 | Transcription Factors May FrameAa-natGene Expression and Melatonin Synthesis at Night in the Syrian<br>Hamster Pineal Gland. Endocrinology, 2003, 144, 2461-2472.                                                                     | 2.8  | 20        |
| 70 | Mechanisms regulating the marked seasonal variation in melatonin synthesis in the European hamster<br>pineal gland. American Journal of Physiology - Regulatory Integrative and Comparative Physiology,<br>2003, 284, R1043-R1052.    | 1.8  | 30        |
| 71 | Hydroxyindole-O-methyltransferase, a Season-coding Enzyme for Melatonin Synthesis in the Pineal<br>Gland of Rodents. Biological Rhythm Research, 2002, 33, 401-416.                                                                   | 0.9  | 1         |
| 72 | Pinealarylalkylamine N-acetyltransferasegene expression is highly stimulated at night in the diurnal<br>rodent,Arvicanthis ansorgei. European Journal of Neuroscience, 2002, 15, 1632-1640.                                           | 2.6  | 28        |

| #  | Article                                                                                                                                                                                                                                                                                                               | IF                 | CITATIONS               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| 73 | Hypocretin (orexin) in the rat pineal gland: a central transmitter with effects on<br>noradrenaline-induced release of melatonin. European Journal of Neuroscience, 2001, 14, 419-425.                                                                                                                                | 2.6                | 45                      |
| 74 | Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. European Journal of Neuroscience, 2000, 12, 3146-3154.                                                                                                                              | 2.6                | 150                     |
| 75 | Long-term daily melatonin infusion induces a large increase in N -acetyltransferase activity,<br>hydroxyindole-O -methyltransferase activity, and melatonin content in the Harderian gland and eye of<br>pinealectomized male Siberian hamsters (Phodopus sungorus ). Journal of Pineal Research, 2000, 29,<br>65-73. | 7.4                | 14                      |
| 76 | HIOMT drives the photoperiodic changes in the amplitude of the melatonin peak of the Siberian hamster. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R1339-R1345.                                                                                                    | 1.8                | 69                      |
| 77 | Photoneural Regulation of Rat Pineal Hydroxyindole- <i>O</i> -Methyltransferase (HIOMT) Messenger<br>Ribonucleic Acid Expression: An Analysis of Its Complex Relationship with HIOMT Activity <sup>1</sup> .<br>Endocrinology, 1999, 140, 1375-1384.                                                                  | 2.8                | 44                      |
| 78 | Photoperiodic Control of the Rat Pineal Arylalkylamine-N-Acetyltransferase and<br>Hydroxyindole-O-Methyltransferase Gene Expression and Its Effect on Melatonin Synthesis. Journal of<br>Biological Rhythms, 1999, 14, 105-115.                                                                                       | 2.6                | 39                      |
| 79 | Molecular cloning of the arylalkylamine-N-acetyltransferase and daily variations of its mRNA expression in the Syrian hamster pineal gland. Molecular Brain Research, 1999, 71, 87-95.                                                                                                                                | 2.3                | 31                      |
| 80 | Photoneural Regulation of Rat Pineal Hydroxyindole-O-Methyltransferase (HIOMT) Messenger<br>Ribonucleic Acid Expression: An Analysis of Its Complex Relationship with HIOMT Activity.<br>Endocrinology, 1999, 140, 1375-1384.                                                                                         | 2.8                | 21                      |
| 81 | Evidence for melatonin synthesis in rodent Harderian gland: A dynamic in vitro study. Journal of<br>Pineal Research, 1998, 25, 54-64.                                                                                                                                                                                 | 7.4                | 54                      |
| 82 | Possible involvement of neuropeptide Y in the seasonal control of<br>hydroxyindole-O-methyltransferase activity in the pineal gland of the European hamster (Cricetus) Tj ETQq0 0 0                                                                                                                                   | rg <b>B1.</b> 20ve | rlo <b>als</b> 10 Tf 50 |
| 83 | Ontogenesis of hydroxyindole-O-methyltransferase gene expression and activity in the rat pineal gland. Developmental Brain Research, 1998, 110, 235-239.                                                                                                                                                              | 1.7                | 26                      |
| 84 | Distribution of hydroxyindole-O-methyltransferase mRNA in the rat brain: an in situ hybridisation study. Cell and Tissue Research, 1998, 291, 415-421.                                                                                                                                                                | 2.9                | 17                      |
| 85 | The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes. Journal of Pineal Research, 1997, 23, 63-71.                                                                                                                                                 | 7.4                | 35                      |
| 86 | Adrenergic and peptidergic regulations of hydroxyindole-O-methyltransferase activity in rat pineal gland. Brain Research, 1997, 777, 247-250.                                                                                                                                                                         | 2.2                | 49                      |
| 87 | Secretoneurin: a new neuropeptide in the rodent pineal gland. Cell and Tissue Research, 1997, 288, 427-434.                                                                                                                                                                                                           | 2.9                | 11                      |
| 88 | Peptidergic Modulation of Serotonin Release from Cultured Rat Pinealocytes. Journal of Neuroendocrinology, 1997, 9, 537-543.                                                                                                                                                                                          | 2.6                | 8                       |
| 89 | Vasopressin potentiation of the melatonin synthetic pathway via specific V1a receptors in the rat pineal gland. Regulatory Peptides, 1996, 61, 63-69.                                                                                                                                                                 | 1.9                | 12                      |
| 90 | Nycthemeral expression of tryptophan hydroxylase mRNAs in the rat pineal gland. Molecular Brain<br>Research, 1996, 40, 136-138.                                                                                                                                                                                       | 2.3                | 11                      |

| #  | Article                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Presynaptic and Postsynaptic Effects of Neuropeptide Y in the Rat Pineal Gland. Journal of Neurochemistry, 1994, 62, 2464-2471.     | 3.9  | 49        |
| 92 | Adrenergic signals direct rhythmic expression of transcriptional represser CREM in the pineal gland.<br>Nature, 1993, 365, 314-320. | 27.8 | 397       |