Marcin Kortylewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5268865/publications.pdf Version: 2024-02-01

		50276	38395
129	11,217	46	95
papers	citations	h-index	g-index
132	132	132	14858
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Reviews Immunology, 2007, 7, 41-51.	22.7	1,588
2	Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nature Medicine, 2004, 10, 48-54.	30.7	1,029
3	Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Medicine, 2005, 11, 1314-1321.	30.7	917
4	IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. Journal of Experimental Medicine, 2009, 206, 1457-1464.	8.5	714
5	Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene, 2005, 24, 5552-5560.	5.9	523
6	Cutting Edge: An In Vivo Requirement for STAT3 Signaling in TH17 Development and TH17-Dependent Autoimmunity. Journal of Immunology, 2007, 179, 4313-4317.	0.8	514
7	Stat3 mediates myeloid cell–dependent tumor angiogenesis in mice. Journal of Clinical Investigation, 2008, 118, 3367-3377.	8.2	473
8	Regulation of the IL-23 and IL-12 Balance by Stat3 Signaling in the Tumor Microenvironment. Cancer Cell, 2009, 15, 114-123.	16.8	431
9	In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nature Biotechnology, 2009, 27, 925-932.	17.5	352
10	STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nature Medicine, 2010, 16, 1421-1428.	30.7	346
11	Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Scientific Reports, 2014, 4, 5750.	3.3	270
12	Targeting STAT3 affects melanoma on multiple fronts. Cancer and Metastasis Reviews, 2005, 24, 315-327.	5.9	255
13	Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nature Medicine, 2022, 28, 704-712.	30.7	181
14	Role of Stat3 in suppressing anti-tumor immunity. Current Opinion in Immunology, 2008, 20, 228-233.	5.5	166
15	Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia, 2009, 57, 1458-1467.	4.9	165
16	Signal Transducer and Activator of Transcription 3 Is Required for Hypoxia-Inducible Factor-1α RNA Expression in Both Tumor Cells and Tumor-Associated Myeloid Cells. Molecular Cancer Research, 2008, 6, 1099-1105.	3.4	162
17	TLR9-Targeted STAT3 Silencing Abrogates Immunosuppressive Activity of Myeloid-Derived Suppressor Cells from Prostate Cancer Patients. Clinical Cancer Research, 2015, 21, 3771-3782.	7.0	152
18	STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia. Cell Reports, 2016, 15, 2357-2366.	6.4	134

#	Article	IF	CITATIONS
19	Interleukin-6 and oncostatin M-induced growth inhibition of human A375 melanoma cells is STAT-dependent and involves upregulation of the cyclin-dependent kinase inhibitor p27/Kip1. Oncogene, 1999, 18, 3742-3753.	5.9	130
20	Stat3 Activity in Melanoma Cells Affects Migration of Immune Effector Cells and Nitric Oxide-Mediated Antitumor Effects. Journal of Immunology, 2005, 174, 3925-3931.	0.8	126
21	CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. Journal of Clinical Investigation, 2014, 124, 2977-2987.	8.2	125
22	Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nature Medicine, 2018, 24, 450-462.	30.7	123
23	Targeting Stat3 in the Myeloid Compartment Drastically Improves the <i>In vivo</i> Antitumor Functions of Adoptively Transferred T Cells. Cancer Research, 2010, 70, 7455-7464.	0.9	118
24	Toll-like Receptor 9 Activation of Signal Transducer and Activator of Transcription 3 Constrains Its Agonist-Based Immunotherapy. Cancer Research, 2009, 69, 2497-2505.	0.9	117
25	TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo. Blood, 2013, 121, 1304-1315.	1.4	103
26	Myeloid cell–targeted miR-146a mimic inhibits NF-κB–driven inflammation and leukemia progression in vivo. Blood, 2020, 135, 167-180.	1.4	88
27	Leukemia cell–targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity. Blood, 2014, 123, 15-25.	1.4	85
28	Stat3 as a Potential Target for Cancer Immunotherapy. Journal of Immunotherapy, 2007, 30, 131-139.	2.4	80
29	Interferon-Î ³ -Mediated Growth Regulation of Melanoma Cells: Involvement of STAT1-Dependent and STAT1-Independent Signals. Journal of Investigative Dermatology, 2004, 122, 414-422.	0.7	78
30	STAT3 in Tumor-Associated Myeloid Cells: Multitasking to Disrupt Immunity. International Journal of Molecular Sciences, 2018, 19, 1803.	4.1	77
31	Mitogen-activated protein kinases control p27/Kip1 expression and growth of human melanoma cells. Biochemical Journal, 2001, 357, 297-303.	3.7	72
32	TLR9 Signaling in the Tumor Microenvironment Initiates Cancer Recurrence after Radiotherapy. Cancer Research, 2013, 73, 7211-7221.	0.9	71
33	Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood, 2016, 127, 1687-1700.	1.4	70
34	Akt Modulates STAT3-mediated Gene Expression through a FKHR (FOXO1a)-dependent Mechanism. Journal of Biological Chemistry, 2003, 278, 5242-5249.	3.4	68
35	SIRT1 Activation Disrupts Maintenance of Myelodysplastic Syndrome Stem and Progenitor Cells by Restoring TET2 Function. Cell Stem Cell, 2018, 23, 355-369.e9.	11.1	68
36	Cytoplasmic STAT proteins associate prior to activation. Biochemical Journal, 2000, 345, 417-421.	3.7	65

#	Article	IF	CITATIONS
37	The revival of CpG oligonucleotide-based cancer immunotherapies. Wspolczesna Onkologia, 2018, 2018, 56-60.	1.4	61
38	TLR9 Is Critical for Glioma Stem Cell Maintenance and Targeting. Cancer Research, 2014, 74, 5218-5228.	0.9	60
39	STAT3 Inhibition Combined with CpG Immunostimulation Activates Antitumor Immunity to Eradicate Genetically Distinct Castration-Resistant Prostate Cancers. Clinical Cancer Research, 2018, 24, 5948-5962.	7.0	59
40	STAT5 Contributes to Interferon Resistance of Melanoma Cells. Current Biology, 2005, 15, 1629-1639.	3.9	56
41	TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Oncotarget, 2015, 6, 17302-17313.	1.8	53
42	Stool Bacteriomic Profiling in Patients with Metastatic Renal Cell Carcinoma Receiving Vascular Endothelial Growth Factor–Tyrosine Kinase Inhibitors. Clinical Cancer Research, 2015, 21, 5286-5293.	7.0	52
43	ldentification of mechanisms of resistance to treatment with abiraterone acetate or enzalutamide in patients with castrationâ€resistant prostate cancer (CRPC). Cancer, 2018, 124, 1216-1224.	4.1	52
44	Mitogen-activated protein kinases control p27/Kip1 expression and growth of human melanoma cells. Biochemical Journal, 2001, 357, 297.	3.7	48
45	Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunology, Immunotherapy, 2017, 66, 979-988.	4.2	48
46	Intracellular processing of immunostimulatory CpG–siRNA: Toll-like receptor 9 facilitates siRNA dicing and endosomal escape. Journal of Controlled Release, 2013, 170, 307-315.	9.9	47
47	TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. Journal of Leukocyte Biology, 2017, 102, 423-436.	3.3	47
48	Humanized Lewis-Y Specific Antibody Based Delivery of <i>STAT3</i> siRNA. ACS Chemical Biology, 2011, 6, 962-970.	3.4	41
49	Myeloid cell–targeted STAT3 inhibition sensitizes head and neck cancers to radiotherapy and T cell–mediated immunity. Journal of Clinical Investigation, 2021, 131, .	8.2	41
50	Reduced T-cell Numbers and Elevated Levels of Immunomodulatory Cytokines in Metastatic Prostate Cancer Patients De Novo Resistant to Abiraterone and/or Enzalutamide Therapy. International Journal of Molecular Sciences, 2019, 20, 1831.	4.1	37
51	Glioma-targeted delivery of exosome-encapsulated antisense oligonucleotides using neural stem cells. Molecular Therapy - Nucleic Acids, 2022, 27, 611-620.	5.1	33
52	Functionalized bioengineered spider silk spheres improve nuclease resistance and activity of oligonucleotide therapeutics providing a strategy for cancer treatment. Acta Biomaterialia, 2017, 59, 221-233.	8.3	29
53	Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leukemia stem cell maintenance. Nature Communications, 2021, 12, 6154.	12.8	27
54	Termination of IL-6-induced STAT activation is independent of receptor internalization but requires de novo protein synthesis. FEBS Letters, 2000, 470, 15-19.	2.8	25

MARCIN KORTYLEWSKI

#	Article	IF	CITATIONS
55	Pazopanib as Third Line Therapy for Metastatic Renal Cell Carcinoma: Clinical Efficacy and Temporal Analysis of Cytokine Profile. Journal of Urology, 2015, 193, 1114-1121.	0.4	25
56	B Cell Lymphoma Immunotherapy Using TLR9-Targeted Oligonucleotide STAT3 Inhibitors. Molecular Therapy, 2018, 26, 695-707.	8.2	25
57	Breaking through a Plateau in Renal Cell Carcinoma Therapeutics: Development and Incorporation of Biomarkers. Molecular Cancer Therapeutics, 2010, 9, 3115-3125.	4.1	24
58	Cytoplasmic STAT proteins associate prior to activation. Biochemical Journal, 2000, 345, 417.	3.7	23
59	SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death and Disease, 2018, 9, 643.	6.3	23
60	Circulating cytokines associated with clinical response to systemic therapy in metastatic renal cell carcinoma. , 2021, 9, e002009.		21
61	Synaptophysin expression on circulating tumor cells in patients with castration resistant prostate cancer undergoing treatment with abiraterone acetate or enzalutamide. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 162.e1-162.e6.	1.6	19
62	Combined modality radiation therapy promotes tolerogenic myeloid cell populations and STAT3-related gene expression in head and neck cancer patients. Oncotarget, 2018, 9, 11279-11290.	1.8	19
63	Interleukin-6-Resistant Melanoma Cells Exhibit Reduced Activation of STAT3 and Lack of Inhibition of Cyclin E-Associated Kinase Activity. Journal of Investigative Dermatology, 2001, 117, 132-140.	0.7	16
64	How to Train Your Dragon: Targeted Delivery of MicroRNA to Cancer Cells In Vivo. Molecular Therapy, 2014, 22, 1070-1071.	8.2	15
65	Treatment-induced arteriolar revascularization and miR-126 enhancement in bone marrow niche protect leukemic stem cells in AML. Journal of Hematology and Oncology, 2021, 14, 122.	17.0	13
66	Vaccination against Nonmutated Neoantigens Induced in Recurrent and Future Tumors. Cancer Immunology Research, 2020, 8, 856-868.	3.4	12
67	Large, Anionic Liposomes Enable Targeted Intraperitoneal Delivery of a TLR 7/8 Agonist To Repolarize Ovarian Tumors' Microenvironment. Bioconjugate Chemistry, 2021, 32, 1581-1592.	3.6	11
68	The aptamer–siRNA conjugates: reprogramming T cells for cancer therapy. Therapeutic Delivery, 2015, 6, 1-4.	2.2	10
69	Cytoplasmic DROSHA and non-canonical mechanisms of MiR-155 biogenesis in FLT3-ITD acute myeloid leukemia. Leukemia, 2021, 35, 2285-2298.	7.2	10
70	MicroRNA Regulation of T-Cell Exhaustion in Cutaneous T Cell Lymphoma. Journal of Investigative Dermatology, 2022, 142, 603-612.e7.	0.7	9
71	Cancer therapy using oligonucleotide-based STAT3 inhibitors: will they deliver?. Therapeutic Delivery, 2014, 5, 239-242.	2.2	8
72	The dark side of Toll-like receptor signaling. Oncolmmunology, 2014, 3, e27894.	4.6	8

#	Article	IF	CITATIONS
73	First Multimodal, Three-Dimensional, Image-Guided Total Marrow Irradiation Model for Preclinical Bone Marrow Transplantation Studies. International Journal of Radiation Oncology Biology Physics, 2021, 111, 671-683.	0.8	8
74	Breaking bad habits: Targeting MDSCs to alleviate immunosuppression in prostate cancer. Oncolmmunology, 2016, 5, e1078060.	4.6	7
75	Push and release. Oncolmmunology, 2014, 3, e27441.	4.6	6
76	TLR9-Targeted SiRNA Delivery In Vivo. Methods in Molecular Biology, 2016, 1364, 183-196.	0.9	6
77	Biophysical Characterization of the Leukemic Bone Marrow Vasculature Reveals Benefits of Neoadjuvant Low-Dose Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 109, 60-72.	0.8	6
78	Targeted InÂVivo Delivery of NF-κB Decoy Inhibitor Augments Sensitivity of B Cell Lymphoma to Therapy. Molecular Therapy, 2021, 29, 1214-1225.	8.2	6
79	Beclin-1 as a neutrophil-specific immune checkpoint. Journal of Clinical Investigation, 2019, 129, 5079-5081.	8.2	6
80	Automated in Vivo Assessment of Vascular Response to Radiation Using a Hybrid Theranostic X-Ray Irradiator/Fluorescence Molecular Imaging System. IEEE Access, 2020, 8, 93663-93670.	4.2	4
81	Targeted Delivery of miRNA Antagonists to Myeloid Cells In Vitro and InÂVivo. Methods in Molecular Biology, 2019, 1974, 141-150.	0.9	3
82	Radium 223 Dichloride in Combination with Androgen Deprivation Therapy and Stereotactic Body Radiation Therapy for Patients with Stage IV Oligometastatic Castration Sensitive Prostate Cancer: Clinical Trial in Progress. International Journal of Radiation Oncology Biology Physics, 2019, 104, 1193.	0.8	2
83	Evaluating Changes in Immune Function and Bone Microenvironment During Radium-223 Treatment of Patients with Castration-Resistant Prostate Cancer. Cancer Biotherapy and Radiopharmaceuticals, 2020, 35, 485-489.	1.0	2
84	Novel Target Opportunities in Non-Metastatic Castrate Resistant Prostate Cancer. Cancers, 2021, 13, 2426.	3.7	2
85	Editorial: Roles of Tumor-Recruited Myeloid Cells in Immune Evasion in Cancer. Frontiers in Immunology, 2021, 12, 749605.	4.8	2
86	Knockdown (KD) of Mir-126 Expression Enhances Tyrosine Kinase Inhibitor (TKI)-Mediated Targeting of Chronic Myelogenous Leukemia (CML) Stem Cells. Blood, 2015, 126, 51-51.	1.4	2
87	Longitudinal Preclinical Imaging Characterizes Extracellular Drug Accumulation After Radiation Therapy in the Healthy and Leukemic Bone Marrow Vascular Microenvironment. International Journal of Radiation Oncology Biology Physics, 2022, 112, 951-963.	0.8	2
88	Regulation of the IL-23 and IL-12 Balance by Stat3 Signaling in the Tumor Microenvironment. Cancer Cell, 2010, 18, 536.	16.8	1
89	216. TLR9-Targeted STAT3 Silencing Abrogates Immunosuppressive Activity of Myeloid-Derived Suppressor Cells from Prostate Cancer Patients. Molecular Therapy, 2015, 23, S85.	8.2	1
90	Cytokine-mediated growth inhibition of human melanoma cells. Advances in Experimental Medicine and Biology, 2001, 495, 169-172.	1.6	1

#	Article	IF	CITATIONS
91	IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. Journal of Cell Biology, 2009, 186, i2-i2.	5.2	1
92	Abstract 35: Chemo-radiotherapy induces tolerogenic STAT3 signaling in circulating myeloid-derived suppressor cells in patients with head and neck squamous cell carcinoma (HNSCC). Clinical Cancer Research, 2017, 23, 35-35.	7.0	1
93	Targeted Marrow Radiation (TMI) Improves Therapeutic Efficacy of STAT3 Decoy Molecules By Augmenting Its Delivery and Immune Modulation in an AML Mouse Model. Blood, 2019, 134, 3929-3929.	1.4	1
94	In Vivo Targeting Of Acute Myeloid Leukemia Using CpG-Stat3 siRNA Results In T Cell-Dependent Tumor Eradication. Blood, 2013, 122, 4212-4212.	1.4	1
95	TLR9 triggering/STAT3 inhibition to reprogram leukemic cells into antigen-presenting cells and trigger T-cell responses Journal of Clinical Oncology, 2017, 35, 118-118.	1.6	1
96	Anti-MiR-126 Therapy for Inv(16) Acute Myeloid Leukemia. Blood, 2019, 134, 3914-3914.	1.4	1
97	Call for papers: Exploiting extracellular vesicles as therapeutic agents. Molecular Therapy, 2022, 30, 979.	8.2	1
98	Cytokine-resistant melanoma cells exhibit reduced DNA binding of STAT3 and lack of inhibition of cyclin E-associated kinase activity. Journal of Dermatological Science, 1998, 16, S5.	1.9	0
99	Targeted TLR9-activation/STAT3-blocking abrogates immunosuppressive functions of myeloid-derived suppressor cells from late-stage prostate cancer patients. , 2014, 2, P104.		0
100	Systemic delivery of TLR9-activating/STAT3-blocking oligonucleotides induces leukemia regression. , 2014, 2, P107.		0
101	698. Eliminating TLR9+ Prostate Cancer Stem Cells In Vivo Using NF-kB/RELA- or STAT3-Targeting CpG-siRNA Conjugates. Molecular Therapy, 2015, 23, S278.	8.2	0
102	Cell-selective oligonucleotide STAT3 inhibitor for immunotherapy of human acute myeloid leukemia. , 2015, 3, P362.		0
103	261. Gain-of-Function Effect Augments Therapeutic Efficacy of CpG-STAT3 Anti-Sense Oligonucleotide Against Castration-Resistant Prostate Cancers. Molecular Therapy, 2016, 24, S103.	8.2	0
104	Inhibition of Survival Signaling in B-Cell Lymphoma Using TLR9-Targeted Delivery of NF-Kb Decoy Oligodeoxynucleotides in Vitro and in Vivo. Experimental Hematology, 2018, 64, S113.	0.4	0
105	Targeted Delivery of miR-146a Mimic Oligonucleotides as a Potential Therapeutic Approach to Modulate NF-kB Signaling in Myeloid Leukemia and Myeloproliferative Diseases. Experimental Hematology, 2018, 64, S42.	0.4	0
106	Distinct cytokines predict response to immunotherapy and targeted therapy in metastatic renal cell carcinoma (mRCC) Journal of Clinical Oncology, 2021, 39, 352-352.	1.6	0
107	Revisiting TLR9 as a target for CLL therapy. Blood, 2021, 137, 3006-3008.	1.4	0
108	Abstract 1570: STAT3 inhibition allows for TLR9-induced reprogramming of acute myeloid leukemia into antigen-presenting cells to generate T-cell mediated immune responses. , 2021, , .		0

#	Article	IF	CITATIONS
109	Abstract 677: Immune biomarkers of response to Ra223 dichloride and stereotactic body radiation therapy in patients with oligometastatic prostate cancers. , 2021, , .		0
110	Abstract 1761: Defining ABI1 role in T-Cell signaling. , 2021, , .		0
111	Abstract B5: CpG-siRNA conjugates: Overcoming cancer immunoresistance. Clinical Cancer Research, 2012, 18, B5-B5.	7.0	0
112	Abstract LB-334: CpG-STAT3siRNA for two-pronged immunotherapy of acute myeloid leukemia , 2013, , .		0
113	The effect of selective JAK2 inhibitor SAR302503 on tumorigenic STAT3 signaling in human prostate cancer in vivo Journal of Clinical Oncology, 2014, 32, 192-192.	1.6	0
114	Abstract CT334: Pazopanib as third-line therapy for metastatic renal cell carcinoma: Clinical efficacy and temporal analysis of cytokine profile. , 2014, , .		0
115	Abstract 2569: Systemic delivery of STAT3 blocking/TLR9 activating oligodeoxynucleotides induces regression of mouse and human acute myeloid leukemia. , 2014, , .		0
116	A Novel Standardized Quantitative Suppression Assay Reveals a Diversity of Human Immune-Regulatory Cell Potency. Blood, 2014, 124, 316-316.	1.4	0
117	Abstract 375: Phenotypic and molecular characterization of circulating tumor cells (CTCs) in patients with castration resistant prostate cancer (CRPC) undergoing treatment with abiraterone acetate or enzalutamide. , 2015, , .		0
118	Time Sequential Transcriptome Analysis Identifies Mir-126 As an Early Biomarker for Inv(16) Acute Myeloid Leukemia (AML) Disease Progression. Blood, 2016, 128, 773-773.	1.4	0
119	Abstract LB-058: ABIraterone (ABI) and ENZalutamide (ENZ) induce changes in immunologic profile of patients with metastatic castration-resistant prostate cancer (mCRPC). , 2017, , .		0
120	Abstract 36: Changes in cellular and molecular immune markers in the peripheral blood of patients undergoing chemotherapy and radiation for squamous cell carcinoma of head and neck: A prospective pilot study. , 2017, , .		0
121	STAT3 Inhibition Enables TLR9-Driven Differentiation of Cbfb/Myh11 acute Myeloid Leukemia Cells to Antigen-Presenting Cell Phenotype In Vivo. Blood, 2018, 132, 4070-4070.	1.4	0
122	Targeted Delivery of CpG-Mir-146a Mimic Oligonucleotides As a Therapeutic Strategy to Reduce NF-Išb-Mediated Pathogenic Inflammation and Myeloid Leukemia Progression. Blood, 2018, 132, 3501-3501.	1.4	0
123	Effect of IL-6 and related mediators on resistance to abiraterone acetate (abi) and enzalutamide (enza) in patients with metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2019, 37, 296-296.	1.6	0
124	FLT3-ITD Activates Cytoplasmic Drosha-Dependent Non-Canonical Mechanisms of Mir-155 Biogenesis in Acute Myeloid Leukemia. Blood, 2019, 134, 2722-2722.	1.4	0
125	Abstract 5356: Targeted in vivo delivery of NF-lºB decoy oligodeoxynucleotide augments efficacy of radiation therapy against B-cell lymphomas. , 2020, , .		0
126	541â€Investigating myeloid derived suppressor cells (MDSCs) and oligonucleotide based targeting of		0

⁶ STAT3 in renal cell carcinoma. , 2020, , .

#	Article	IF	CITATIONS
127	724â€STAT3 inhibition in acute myeloid leukemia cells allows for TLR9-driven differentiation to immunogenic monocytic cells and induction of T-cell mediated immune responses. , 2020, , .		0
128	Noninvasive Delivery of Biologicals to the Brain. Focus (American Psychiatric Publishing), 2022, 20, 64-70.	0.8	0
129	Targeted RNA therapeutics for treatment of cancer and immunomodulation. , 2022, , 37-55.		0