Kazuo Takimiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5267916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thienoaceneâ€Based Organic Semiconductors. Advanced Materials, 2011, 23, 4347-4370.	21.0	865
2	Highly Soluble [1]Benzothieno[3,2- <i>b</i>]benzothiophene (BTBT) Derivatives for High-Performance, Solution-Processed Organic Field-Effect Transistors. Journal of the American Chemical Society, 2007, 129, 15732-15733.	13.7	852
3	Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2†,3†-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors. Journal of the American Chemical Society, 2007, 129, 2224-2225.	13.7	826
4	Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9, 403-408.	31.4	769
5	Organic Semiconductors Based on [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene Substructure. Accounts of Chemical Research, 2014, 47, 1493-1502.	15.6	440
6	2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene, A New Organic Semiconductor for Air-Stable Organic Field-Effect Transistors with Mobilities up to 2.0 cm2V-1s-1. Journal of the American Chemical Society, 2006, 128, 12604-12605.	13.7	405
7	Molecular Ordering of Highâ€Performance Soluble Molecular Semiconductors and Reâ€evaluation of Their Fieldâ€Effect Transistor Characteristics. Advanced Materials, 2008, 20, 3388-3392.	21.0	374
8	Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nature Energy, 2017, 2, 780-785.	39.5	369
9	High-efficiency polymer solar cells with small photon energy loss. Nature Communications, 2015, 6, 10085.	12.8	358
10	Solutionâ€Processable Organic Single Crystals with Bandlike Transport in Fieldâ€Effect Transistors. Advanced Materials, 2011, 23, 523-526.	21.0	348
11	Patternable Solutionâ€Crystallized Organic Transistors with High Charge Carrier Mobility. Advanced Materials, 2011, 23, 1626-1629.	21.0	337
12	Synthesis, Characterization, and Transistor and Solar Cell Applications of a Naphthobisthiadiazole-Based Semiconducting Polymer. Journal of the American Chemical Society, 2012, 134, 3498-3507.	13.7	323
13	Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers. Journal of the American Chemical Society, 2016, 138, 10265-10275.	13.7	319
14	Alkylated Dinaphtho[2,3â€ <i>b</i> :2′,3′â€ <i>f</i>]Thieno[3,2â€b]Thiophenes (C _{<i>n</i>} â€DN Organic Semiconductors for Highâ€Performance Thinâ€Film Transistors. Advanced Materials, 2011, 23, 1222-1225.	√TTs): 21.0	310
15	Naphthodithiophene–Naphthobisthiadiazole Copolymers for Solar Cells: Alkylation Drives the Polymer Backbone Flat and Promotes Efficiency. Journal of the American Chemical Society, 2013, 135, 8834-8837.	13.7	301
16	Organic transistors with high thermal stability for medical applications. Nature Communications, 2012, 3, 723.	12.8	290
17	Linear- and Angular-Shaped Naphthodithiophenes: Selective Synthesis, Properties, and Application to Organic Field-Effect Transistors. Journal of the American Chemical Society, 2011, 133, 5024-5035.	13.7	276
18	Thiophene–Thiazolothiazole Copolymers: Significant Impact of Side Chain Composition on Backbone Orientation and Solar Cell Performances. Advanced Materials, 2014, 26, 331-338.	21.0	275

#	Article	IF	CITATIONS
19	Functional oligothiophenes as advanced molecular electronic materials. Journal of Materials Chemistry, 2002, 12, 2565-2575.	6.7	258
20	Consecutive Thiophene-Annulation Approach to ï€-Extended Thienoacene-Based Organic Semiconductors with [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene (BTBT) Substructure. Journal of the American Chemical Society, 2013, 135, 13900-13913.	13.7	256
21	Very High Mobility in Solution-Processed Organic Thin-Film Transistors of Highly Ordered [1]Benzothieno[3,2-b]benzothiophene Derivatives. Applied Physics Express, 2009, 2, 111501.	2.4	254
22	Synthesis and Spectroscopic Properties of a Series of β-Blocked Long Oligothiophenes up to the 96-mer:Â Revaluation of Effective Conjugation Length. Journal of the American Chemical Society, 2003, 125, 5286-5287.	13.7	235
23	2,6-Diphenylbenzo[1,2-b:4,5-bâ€`]dichalcogenophenes: A New Class of High-Performance Semiconductors for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2004, 126, 5084-5085.	13.7	227
24	Contact Resistance and Megahertz Operation of Aggressively Scaled Organic Transistors. Small, 2012, 8, 73-79.	10.0	217
25	Flexible Lowâ€Voltage Organic Transistors and Circuits Based on a Highâ€Mobility Organic Semiconductor with Good Air Stability. Advanced Materials, 2010, 22, 982-985.	21.0	213
26	π-Building Blocks for Organic Electronics: Revaluation of "Inductive―and "Resonance―Effects of Ï€-Electron Deficient Units. Chemistry of Materials, 2014, 26, 587-593.	6.7	211
27	Impact of Isomeric Structures on Transistor Performances in Naphthodithiophene Semiconducting Polymers. Journal of the American Chemical Society, 2011, 133, 6852-6860.	13.7	205
28	Extensive Quinoidal Oligothiophenes with Dicyanomethylene Groups at Terminal Positions as Highly Amphoteric Redox Molecules. Journal of the American Chemical Society, 2005, 127, 8928-8929.	13.7	204
29	Dianthra[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene (DATT): Synthesis, Characterization, and FET Characteristics of New ΀-Extended Heteroarene with Eight Fused Aromatic Rings. Journal of the American Chemical Society, 2011, 133, 8732-8739.	13.7	199
30	Organic Electronics on Banknotes. Advanced Materials, 2011, 23, 654-658.	21.0	197
31	2,7-Diphenyl[1]benzoselenopheno[3,2-b][1]benzoselenophene as a Stable Organic Semiconductor for a High-Performance Field-Effect Transistor. Journal of the American Chemical Society, 2006, 128, 3044-3050.	13.7	193
32	Solution-Processible n-Channel Organic Field-Effect Transistors Based on Dicyanomethylene-Substituted Terthienoquinoid Derivative. Journal of the American Chemical Society, 2007, 129, 11684-11685.	13.7	191
33	One-pot Synthesis of Benzo[<i>b</i>]thiophenes and Benzo[<i>b</i>]selenophenes from <i>o</i> -Halo-Substituted Ethynylbenzenes: Convenient Approach to Mono-, Bis-, and Tris-Chalcogenophene-Annulated Benzenes. Organic Letters, 2009, 11, 2473-2475.	4.6	187
34	High-Mobility Semiconducting Naphthodithiophene Copolymers. Journal of the American Chemical Society, 2010, 132, 5000-5001.	13.7	184
35	Naphthodithiophenediimide (NDTI): Synthesis, Structure, and Applications. Journal of the American Chemical Society, 2013, 135, 11445-11448.	13.7	172
36	Dinaphthopentalenes: Pentalene Derivatives for Organic Thinâ€Film Transistors. Angewandte Chemie - International Edition, 2010, 49, 7728-7732.	13.8	170

#	Article	IF	CITATIONS
37	Large Photocurrent Generation of Gold Electrodes Modified with [60]Fullerene-Linked Oligothiophenes Bearing a Tripodal Rigid Anchor. Journal of the American Chemical Society, 2002, 124, 532-533.	13.7	168
38	Synthesis, Properties, and Structures of Benzo[1,2- <i>b</i> :4,5- <i>bâ€~</i>]bis[<i>b</i>]benzothiophene and Benzo[1,2- <i>b</i> :4,5- <i>bâ€~</i>]bis[<i>b</i>]benzoselenophene. Organic Letters, 2007, 9, 4499-4502.	4.6	168
39	Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. Organic Electronics, 2011, 12, 1370-1375.	2.6	162
40	Drastic Change of Molecular Orientation in a Thiazolothiazole Copolymer by Molecularâ€Weight Control and Blending with PC ₆₁ BM Leads to High Efficiencies in Solar Cells. Advanced Materials, 2012, 24, 425-430.	21.0	157
41	Solutionâ€Crystallized Organic Fieldâ€Effect Transistors with Chargeâ€Acceptor Layers: Highâ€Mobility and Lowâ€Thresholdâ€Voltage Operation in Air. Advanced Materials, 2011, 23, 3309-3314.	21.0	156
42	Backbone orientation in semiconducting polymers. Polymer, 2015, 59, A1-A15.	3.8	156
43	Synthesis, Properties, Crystal Structures, and Semiconductor Characteristics of Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene and -diselenophene Derivatives. Journal of Organic Chemistry, 2010, 75, 1228-1234.	3.2	154
44	Facile Synthesis, Structure, and Properties of Benzo[1,2-b:4,5-bâ€~]dichalcogenophenes. Journal of Organic Chemistry, 2005, 70, 10569-10571.	3.2	149
45	Naphthodithiophenediimide–Benzobisthiadiazole-Based Polymers: Versatile n-Type Materials for Field-Effect Transistors and Thermoelectric Devices. Macromolecules, 2017, 50, 857-864.	4.8	145
46	On the Biradicaloid Nature of Long Quinoidal Oligothiophenes: Experimental Evidence Guided by Theoretical Studies. Angewandte Chemie - International Edition, 2007, 46, 9057-9061.	13.8	143
47	Dimeric Tetrathiafulvalenes: New electron donors. Advanced Materials, 1996, 8, 203-211.	21.0	142
48	High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors. Applied Physics Letters, 2009, 95, .	3.3	141
49	Triphenyleno[1,12-bcd:4,5-b′c′d′:8,9-b″c″d″]trithiophene: the first bowl-shaped heteroaromatic. Communications, 1999, , 1859-1860.	Chemical 4.1	140
50	Temperatureâ€Independent Transport in Highâ€Mobility Dinaphthoâ€Thienoâ€Thiophene (DNTT) Single Crystal Transistors. Advanced Materials, 2013, 25, 3478-3484.	21.0	133
51	Pyrrolo-Annelated Tetrathiafulvalenes:Â The Parent Systems. Journal of Organic Chemistry, 2000, 65, 5794-5805.	3.2	129
52	A 4 V Operation, Flexible Braille Display Using Organic Transistors, Carbon Nanotube Actuators, and Organic Static Randomâ€Access Memory. Advanced Functional Materials, 2011, 21, 4019-4027.	14.9	128
53	Naphthodithiophene-Based Donor–Acceptor Polymers: Versatile Semiconductors for OFETs and OPVs. ACS Macro Letters, 2012, 1, 437-440.	4.8	128
54	Development of New Semiconducting Materials for Durable High-performance Air-stable Organic Field-effect Transistors. Chemistry Letters, 2007, 36, 578-583.	1.3	127

#	Article	IF	CITATIONS
55	((Alkyloxy)carbonyl)cyanomethylene-Substituted Thienoquinoidal Compounds: a New Class of Soluble n-Channel Organic Semiconductors for Air-Stable Organic Field-Effect Transistors. Journal of the American Chemical Society, 2010, 132, 10453-10466.	13.7	127
56	Chasing the "Killer―Phonon Mode for the Rational Design of Lowâ€Disorder, Highâ€Mobility Molecular Semiconductors. Advanced Materials, 2019, 31, e1902407.	21.0	126
57	Contact Doping and Ultrathin Gate Dielectrics for Nanoscale Organic Thinâ€Film Transistors. Small, 2011, 7, 1186-1191.	10.0	122
58	Isomerically Pure Anthra[2,3- <i>b</i> :6,7- <i>b</i> ′]-difuran (<i>anti</i> -ADF), -dithiophene (<i>anti</i> -ADT), and -diselenophene (<i>anti</i> -ADS): Selective Synthesis, Electronic Structures, and Application to Organic Field-Effect Transistors. Journal of Organic Chemistry, 2012, 77, 8099-8111.	3.2	111
59	Very Small Bandgap π-Conjugated Polymers with Extended Thienoquinoids. Journal of the American Chemical Society, 2016, 138, 7725-7732.	13.7	111
60	Naphthodithiophenediimide–Bithiopheneimide Copolymers for Highâ€Performance nâ€Type Organic Thermoelectrics: Significant Impact of Backbone Orientation on Conductivity and Thermoelectric Performance. Advanced Materials, 2020, 32, e2002060.	21.0	111
61	All-Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide (NDTI) Copolymer. ACS Macro Letters, 2014, 3, 872-875.	4.8	110
62	High Yield Ultrafast Intramolecular Singlet Exciton Fission in a Quinoidal Bithiophene. Journal of Physical Chemistry Letters, 2015, 6, 1375-1384.	4.6	106
63	Flexible Lowâ€Voltage Organic Complementary Circuits: Finding the Optimum Combination of Semiconductors and Monolayer Gate Dielectrics. Advanced Materials, 2015, 27, 207-214.	21.0	106
64	Flexible Lowâ€Voltage Organic Transistors with High Thermal Stability at 250 °C. Advanced Materials, 2013, 25, 3639-3644.	21.0	101
65	Flexible low-voltage organic thin-film transistors and circuits based on C ₁₀ -DNTT. Journal of Materials Chemistry, 2012, 22, 4273-4277.	6.7	99
66	Porphyrinâ^'Oligothiopheneâ^'Fullerene Triads as an Efficient Intramolecular Electron-Transfer System. Organic Letters, 2002, 4, 309-311.	4.6	97
67	Sheet-Type Flexible Organic Active Matrix Amplifier System Using Pseudo-CMOS Circuits With Floating-Gate Structure. IEEE Transactions on Electron Devices, 2012, 59, 3434-3441.	3.0	97
68	Synthesis and Properties of a Series of the Longest Oligothiophenes up to the 48-mer. Bulletin of the Chemical Society of Japan, 2001, 74, 979-988.	3.2	94
69	General Synthesis of Dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene (DNTT) Derivatives. Organic Letters, 2011, 13, 3430-3433.	4.6	94
70	High-mobility organic thin-film transistors based on a small-molecule semiconductor deposited in vacuum and by solution shearing. Organic Electronics, 2013, 14, 3213-3221.	2.6	94
71	Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics. Advanced Materials, 2017, 29, 1605218.	21.0	91
72	Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors. Science and Technology of Advanced Materials, 2007, 8, 273-276.	6.1	89

#	Article	IF	CITATIONS
73	Solution-Processible Organic Semiconductors Based on Selenophene-Containing Heteroarenes, 2,7-Dialkyl[1]benzoselenopheno[3,2- <i>b</i>][1]benzoselenophenes (C _{<i>n</i>} -BSBSs): Syntheses, Properties, Molecular Arrangements, and Field-Effect Transistor Characteristics. Chemistry of Materials, 2009, 21, 903-912.	6.7	89
74	Synthesis, Optical, and Conductive Properties of Long Oligothiophenes and Their Utilization as Molecular Wires. Bulletin of the Chemical Society of Japan, 2001, 74, 1789-1801.	3.2	87
75	Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation. Scientific Reports, 2012, 2, 393.	3.3	87
76	Organic Field-Effect Transistor Using Oligoselenophene as an Active Layer. Chemistry of Materials, 2003, 15, 6-7.	6.7	86
77	Photoinduced Electron Transfer in Porphyrin-Oligothiophene-Fullerene Linked Triads by Excitation of a Porphyrin Moiety. Journal of Physical Chemistry B, 2004, 108, 10700-10710.	2.6	86
78	Syntheses, Structures, Spectroscopic Properties, and π-Dimeric Interactions of [n.n]Quinquethiophenophanes. Journal of the American Chemical Society, 2005, 127, 8082-8089.	13.7	86
79	Comparison among Perylene Diimide (PDI), Naphthalene Diimide (NDI), and Naphthodithiophene Diimide (NDTI) Based n-Type Polymers for All-Polymer Solar Cells Application. Macromolecules, 2017, 50, 3179-3185.	4.8	85
80	Naphthodithiophenes as building units for small molecules to polymers; a case study for in-depth understanding of structure–property relationships in organic semiconductors. Journal of Materials Chemistry C, 2013, 1, 1297-1304.	5.5	84
81	Transient nature of graphene quantum dot formation via a hydrothermal reaction. RSC Advances, 2014, 4, 55709-55715.	3.6	84
82	Detailed analysis and contact properties of low-voltage organic thin-film transistors based on dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) and its didecyl and diphenyl derivatives. Organic Electronics, 2016, 35, 33-40.	2.6	83
83	Dithienylthienothiophenebisimide, a Versatile Electronâ€Deficient Unit for Semiconducting Polymers. Advanced Materials, 2016, 28, 6921-6925.	21.0	83
84	Naphthodithiophene Diimide (NDTI)-Based Semiconducting Copolymers: From Ambipolar to Unipolar n-Type Polymers. Macromolecules, 2015, 48, 576-584.	4.8	81
85	Naphtho[2,3- <i>b</i> :6,7- <i>b</i> â€2]dichalcogenophenes: Syntheses, Characterizations, and Chalcogene Atom Effects on Organic Field-Effect Transistor and Organic Photovoltaic Devices. Chemistry of Materials, 2012, 24, 190-198.	6.7	80
86	Diphenyl Derivatives of Dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene: Organic Semiconductors for Thermally Stable Thin-Film Transistors. ACS Applied Materials & Interfaces, 2013, 5, 2331-2336.	8.0	80
87	Effect of Chalcogen Atom on the Properties of Naphthobischalcogenadiazole-Based π-Conjugated Polymers. Chemistry of Materials, 2015, 27, 6558-6570.	6.7	78
88	Recent Synthetic Advances of Tetrathiafulvalene-Based Organic Conductors. Bulletin of the Chemical Society of Japan, 2004, 77, 43-58.	3.2	75
89	Benzobisthiazoleâ€Based Semiconducting Copolymers Showing Excellent Environmental Stability in Highâ€Humidity Air. Advanced Materials, 2010, 22, 4993-4997.	21.0	74
90	Quinoidal Oligothiophenes: Towards Biradical Ground‣tate Species. Chemistry - A European Journal, 2010, 16, 470-484.	3.3	74

#	Article	IF	CITATIONS
91	Megahertz operation of flexible low-voltage organic thin-film transistors. Organic Electronics, 2013, 14, 1516-1520.	2.6	73
92	Naphthodithiophene Diimide-Based Copolymers: Ambipolar Semiconductors in Field-Effect Transistors and Electron Acceptors with Near-Infrared Response in Polymer Blend Solar Cells. Macromolecules, 2016, 49, 1752-1760.	4.8	73
93	Pyrrolo Annelated Tetrathiafulvalenes:Â The Parent Systems. Organic Letters, 1999, 1, 1291-1294.	4.6	70
94	Quasi One-Dimensional Organic Superconductor MDT-TSFâ‹Aul2 withTc=4.5 K at Ambient Pressure. Angewandte Chemie - International Edition, 2001, 40, 1122-1125.	13.8	70
95	Tuning the effective spin-orbit coupling in molecular semiconductors. Nature Communications, 2017, 8, 15200.	12.8	70
96	2,6-Diarylnaphtho[1,8-bc:5,4-bâ€~câ€~]dithiophenes as New High-Performance Semiconductors for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2005, 127, 3605-3612.	13.7	69
97	[2,2′]Bi[naphtho[2,3-b]furanyl]: a versatile organic semiconductor with a furan–furan junction. Chemical Communications, 2012, 48, 5892.	4.1	69
98	Thienannulation: Efficient Synthesis of Ï€â€Extended Thienoacenes Applicable to Organic Semiconductors. European Journal of Organic Chemistry, 2013, 2013, 217-227.	2.4	69
99	Highly Oriented Polymer Semiconductor Films Compressed at the Surface of Ionic Liquids for Highâ€Performance Polymeric Organic Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 6430-6435.	21.0	69
100	Vapour deposited films of quinoidal biselenophene and bithiophene derivatives as active layers of n-channel organic field-effect transistors. Journal of Materials Chemistry, 2004, 14, 1367.	6.7	68
101	Synthesis and Photophysical Properties of Ferroceneâ^'Oligothiopheneâ^'Fullerene Triads. Journal of Organic Chemistry, 2004, 69, 7183-7189.	3.2	68
102	Quinacridone-Based Semiconducting Polymers: Implication of Electronic Structure and Orientational Order for Charge Transport Property. Chemistry of Materials, 2012, 24, 1235-1243.	6.7	68
103	Control of Major Carriers in an Ambipolar Polymer Semiconductor by Selfâ€Assembled Monolayers. Advanced Materials, 2017, 29, 1602893.	21.0	66
104	Design and elaboration of organic molecules for high field-effect-mobility semiconductors. Synthetic Metals, 2016, 217, 68-78.	3.9	65
105	Thiophene-Fused Naphthalene Diimides: New Building Blocks for Electron Deficient π-Functional Materials. Bulletin of the Chemical Society of Japan, 2018, 91, 121-140.	3.2	65
106	Benzothienobenzothiophene-Based Molecular Conductors: High Conductivity, Large Thermoelectric Power Factor, and One-Dimensional Instability. Journal of the American Chemical Society, 2016, 138, 3920-3925.	13.7	64
107	Novel dibenzo[a,e]pentalene-based conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 64-70.	5.5	63
108	Three Structural Isomers of Dinaphthothieno[3,2- <i>b</i>]thiophenes: Elucidation of Physicochemical Properties, Crystal Structures, and Field-Effect Transistor Characteristics. Bulletin of the Chemical Society of Japan, 2010, 83, 120-130.	3.2	61

#	Article	IF	CITATIONS
109	Organic Pseudo-CMOS Circuits for Low-Voltage Large-Gain High-Speed Operation. IEEE Electron Device Letters, 2011, 32, 1448-1450.	3.9	61
110	α-Modified Naphthodithiophene Diimides—Molecular Design Strategy for Air-Stable n-Channel Organic Semiconductors. Chemistry of Materials, 2015, 27, 6418-6425.	6.7	60
111	Air-stable solution-processed ambipolar organic field-effect transistors based on a dicyanomethylene-substituted terheteroquinoid derivative. Chemical Communications, 2009, , 3919.	4.1	59
112	Reverseâ€Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1707526.	21.0	59
113	Thermally, Operationally, and Environmentally Stable Organic Thin-Film Transistors Based on Bis[1]benzothieno[2,3- <i>d</i> :2′,3′- <i>d</i> ′]naphtho[2,3- <i>b</i> :6,7- <i>b</i> à€²]dithiophene Deriva Effective Synthesis, Electronic Structures, and Structureâ€"Property Relationship. Chemistry of Materials. 2015, 27, 5049-5057.	tives: 6.7	58
114	An ambipolar organic field-effect transistor using oligothiophene incorporated with two [60]fullerenes. Journal of Materials Chemistry, 2004, 14, 2840.	6.7	55
115	Highâ€Speed Flexible Organic Fieldâ€Effect Transistors with a 3D Structure. Advanced Materials, 2011, 23, 3047-3051.	21.0	55
116	Direct formation of organic semiconducting single crystals by solvent vapor annealing on a polymer base film. Journal of Materials Chemistry, 2012, 22, 8462.	6.7	55
117	Polyether-Bridged Sexithiophene as a Complexation-Gated Molecular Wire for Intramolecular Photoinduced Electron Transfer. Journal of the American Chemical Society, 2005, 127, 15372-15373.	13.7	54
118	One-step synthesis of [1]benzothieno[3,2-b][1]benzothiophene from o-chlorobenzaldehyde. Tetrahedron Letters, 2011, 52, 285-288.	1.4	54
119	A Convenient Preparation of 1,3-Dithiole-2-thione and 1,3-Diselenole-2-selone Derivatives. Synlett, 1997, 1997, 319-321.	1.8	53
120	Free-electron-like Hall effect in high-mobility organic thin-film transistors. Physical Review B, 2010, 81,	3.2	53
121	Highly Efficient and Stable Solar Cells Based on Thiazolothiazole and Naphthobisthiadiazole Copolymers. Scientific Reports, 2015, 5, 14202.	3.3	53
122	Synthesis and Spectroscopic Properties of [2.2]Quinquethiophenophane as an Ideal π-Dimer Model. Organic Letters, 2000, 2, 4197-4199.	4.6	52
123	Synthesis and Photophysical Properties of Two Dual Oligothiophene-Fullerene Linkage Molecules as Photoinduced Long-Distance Charge Separation Systems. Journal of Organic Chemistry, 2006, 71, 1761-1768.	3.2	52
124	Synthesis and Characterization of Benzo[1,2- <i>b</i> :3,4- <i>b′</i> :5,6- <i>b′′</i>]trithiophene (BTT) Oligomers. Journal of Organic Chemistry, 2011, 76, 4061-4070.	3.2	52
125	Spectral properties of the longest oligothiophenes in the oxidation states. Synthetic Metals, 2001, 119, 413-414.	3.9	51
126	Solution-Processed Dioctylbenzothienobenzothiophene-Based Top-Gate Organic Transistors with High Mobility, Low Threshold Voltage, and High Electrical Stability. Applied Physics Express, 2010, 3, 121601.	2.4	50

#	Article	IF	CITATIONS
127	Largely ï€-Extended Thienoacenes with Internal Thieno[3,2- <i>b</i>]thiophene Substructures: Synthesis, Characterization, and Organic Field-Effect Transistor Applications. Organic Letters, 2012, 14, 4914-4917.	4.6	50
128	Correlation between interdomain carrier hopping and apparent mobility in polycrystalline organic transistors as investigated by electron spin resonance. Physical Review B, 2012, 85, .	3.2	50
129	Electrical characteristics of single-component ambipolar organic field-effect transistors and effects of air exposure on them. Journal of Applied Physics, 2008, 103, .	2.5	49
130	Angularâ€Shaped 4,9â€Dialkyl α―and βâ€Naphthodithiopheneâ€Based Donor–Acceptor Copolymers: Investi of Isomeric Structural Effects on Molecular Properties and Performance of Fieldâ€Effect Transistors and Photovoltaics. Advanced Functional Materials, 2015, 25, 6131-6143.	gation 14.9	49
131	Quinoidal Oligothiophenes with (Acyl)cyanomethylene Termini: Synthesis, Characterization, Properties, and Solution Processed n-Channel Organic Field-Effect Transistors. Chemistry of Materials, 2011, 23, 795-804.	6.7	48
132	Reversible Dimerization and Polymerization of a Janus Diradical To Produce Labile Câ^'C Bonds and Large Chromic Effects. Angewandte Chemie - International Edition, 2016, 55, 14563-14568.	13.8	47
133	Novel Selenocycle-Fused TTF-Type of Electron Donors Forming Conducting Molecular Complexes:Â Bis(ethyleneseleno)tetrathiafulvalene (BES-TTF), Diselenolotetrathiafulvalene (DS-TTF), and Bis(ethyleneseleno)tetraselenafulvalene (BES-TSF). Journal of Organic Chemistry, 1998, 63, 8865-8872.	3.2	46
134	Control of Photoinduced Energy- and Electron-Transfer Steps in Zinc Porphyrinâ''Oligothiopheneâ´Fullerene Linked Triads with Solvent Polarity. Journal of Physical Chemistry B, 2005, 109, 14365-14374.	2.6	46
135	FET Characteristics of Dinaphthothienothiophene (DNTT) on Si/SiO2 Substrates with Various Surface-Modifications. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 57-59.	0.3	46
136	Unique three-dimensional (3D) molecular array in dimethyl-DNTT crystals: a new approach to 3D organic semiconductors. Chemical Science, 2010, 1, 179.	7.4	46
137	Preparation and Photoelectrochemical Properties of Gold Electrodes Modified with [60]Fullerene-Linked Oligothiophenes. Chemistry Letters, 2000, 29, 570-571.	1.3	45
138	Organic superconductor with an incommensurate anion structure: (MDTâ^'TSF)(AuI2)0.44. Physical Review B, 2002, 65, .	3.2	45
139	Alkylated 2,6-Bis(dicyanomethylene)-2,6-dihydrobenzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]dithiophenes: New Soluble n-Channel Organic Semiconductors for Air-stable OFETs. Chemistry Letters, 2009, 38, 568-569.	1.3	45
140	Singleâ€Crystalâ€Like Organic Thinâ€Film Transistors Fabricated from Dinaphtho[2,3â€ <i>b</i> :2′,3′â€ <i>f</i>]thieno[3,2â€ <i>b</i>]thiophene (DNTT) Precursor–Polystyrene Advanced Materials, 2015, 27, 6606-6611.	Belanols.	45
141	TTF–porphyrin dyads as novel photoinduced electron transfer systems. Tetrahedron Letters, 2003, 44, 161-165.	1.4	44
142	High Operation Stability of Ultraflexible Organic Solar Cells with Ultravioletâ€Filtering Substrates. Advanced Materials, 2019, 31, e1808033.	21.0	44
143	Synthetic Procedure for Various Selenium-Containing Electron Donors of the Bis(Ethylenedithio)tetrathiafulvalene (BEDT-TTF) Type. Journal of Organic Chemistry, 2002, 67, 4218-4227.	3.2	43
144	Quinoidal Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophenes for Solution-Processed n-Channel Organic Field-Effect Transistors. Organic Letters, 2014, 16, 1334-1337.	4.6	43

#	Article	IF	CITATIONS
145	Flat-Lying Semiconductor–Insulator Interfacial Layer in DNTT Thin Films. ACS Applied Materials & Interfaces, 2015, 7, 1833-1840.	8.0	43
146	Soluble Organic Semiconductor Precursor with Specific Phase Separation for Highâ€Performance Printed Organic Transistors. Advanced Materials, 2015, 27, 727-732.	21.0	43
147	Soluble Dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene Derivatives for Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2016, 8, 3810-3824.	8.0	43
148	Syntheses, Unique Strained Molecular Structures, and Unusual Transannular Electronic Interactions of a Series of Crisscross-Overlapped Tetrathiafulvalenophanes. Journal of Organic Chemistry, 1997, 62, 5567-5574.	3.2	42
149	Orthogonally Functionalized Naphthodithiophenes: Selective Protection and Borylation. Organic Letters, 2012, 14, 4718-4721.	4.6	42
150	Synthesis and Photovoltaic Effects of Oligothiophenes Incorporated with Two [60]Fullerenes. Chemistry Letters, 2004, 33, 654-655.	1.3	41
151	Development and Photovoltaic Performance of Oligothiophene-sensitized TiO2Solar Cells. Chemistry Letters, 2006, 35, 592-593.	1.3	41
152	Application of flash vacuum pyrolysis to the synthesis of sulfur-containing heteroaromatic systems. Tetrahedron Letters, 1999, 40, 2789-2792.	1.4	40
153	Oligothiophene/fullerene Dyads as Active Photovoltaic Materials. Chemistry Letters, 2003, 32, 404-405.	1.3	40
154	Molecular Modification of 2,6-Diphenylbenzo[1,2-b:4,5-bâ€2]dichalcogenophenes by Introduction of Strong Electron-withdrawing Groups: Conversion from p- to n-Channel OFET Materials. Chemistry Letters, 2006, 35, 1200-1201.	1.3	39
155	Development of <i>N</i> -Alkyl-Substituted Bis(pyrrolo[3,4- <i>d</i>])tetrathiafulvalenes as Organic Semiconductors for Solution-Processible Field-Effect Transistors. Chemistry of Materials, 2007, 19, 5230-5237.	6.7	39
156	Forming semiconductor/dielectric double layers by one-step spin-coating for enhancing the performance of organic field-effect transistors. Organic Electronics, 2012, 13, 1146-1151.	2.6	39
157	"Manipulation―of Crystal Structure by Methylthiolation Enabling Ultrahigh Mobility in a Pyreneâ€Based Molecular Semiconductor. Advanced Materials, 2021, 33, e2102914.	21.0	39
158	Highly Conductive 1 : 1 Radical Cation Salts of Anthra[1,9-cd: 4,10-c′d′]bis[1,2]dichalcogenoles. Bulletin of the Chemical Society of Japan, 1994, 67, 766-772.	3.2	38
159	2,6-Dialkylbenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophenes (C <i>n</i> BDTs) as Soluble Organic Semiconductors for Solution-processed Organic Field-effect Transistors. Chemistry Letters, 2008, 37, 284-285.	1.3	38
160	Sodium Sulfide-Promoted Thiophene-Annulations: Powerful Tools for Elaborating Organic Semiconducting Materials. Chemistry of Materials, 2017, 29, 256-264.	6.7	38
161	Synthesis and photophysical properties of [60]fullerene-oligo(thienylene–ethynylene) dyads. Tetrahedron Letters, 2001, 42, 6877-6881.	1.4	37
162	Raman Spectroscopy Shows Interchain through Space Charge Delocalization in a Mixed Valence Oligothiophene Cation and in Its i€-Dimeric Biradicaloid Dication. Journal of the American Chemical Society, 2008, 130, 14028-14029.	13.7	36

#	Article	IF	CITATIONS
163	Contrasting Effect of Alkylation on the Ordering Structure in Isomeric Naphthodithiophene-Based Polymers. Macromolecules, 2014, 47, 3502-3510.	4.8	36
164	Naphthodithiophenediimide (NDTI)-based triads for high-performance air-stable, solution-processed ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2015, 3, 4244-4249.	5.5	36
165	Selenium-Substituted β-Methylthiobenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophenes: Synthesis, Packing Structure, and Transport Properties. Chemistry of Materials, 2019, 31, 6696-6705.	6.7	36
166	"Disrupt and induce―intermolecular interactions to rationally design organic semiconductor crystals: from herringbone to rubrene-like pitched π-stacking. Chemical Science, 2020, 11, 1573-1580.	7.4	36
167	High-performance organic transistors with high- <i>k</i> dielectrics: A comparative study on solution-processed single crystals and vacuum-deposited polycrystalline films of 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene. Applied Physics Letters, 2012, 101, .	3.3	35
168	Two Isomeric Triple-Layered Tetrathiafulvalenophanes: Syntheses, Structures, and Electrochemical Properties. Tetrahedron Letters, 1997, 38, 3017-3020.	1.4	34
169	Air-Stable and High-Mobility Organic Semiconductors Based on Heteroarenes for Field-Effect Transistors. Heterocycles, 2011, 83, 1187.	0.7	34
170	Flexible Threeâ€Dimensional Organic Fieldâ€Effect Transistors Fabricated by an Imprinting Technique. Advanced Materials, 2012, 24, 5212-5216.	21.0	34
171	Bias-stress stability of low-voltage p-channel and n-channel organic thin-film transistors on flexible plastic substrates. Organic Electronics, 2014, 15, 3173-3182.	2.6	34
172	Naphtho[2,3-b]thiophene diimide (NTI): a mono-functionalisable core-extended naphthalene diimide for electron-deficient architectures. Journal of Materials Chemistry C, 2016, 4, 8879-8883.	5.5	34
173	Durable Ultraflexible Organic Photovoltaics with Novel Metalâ€Oxideâ€Free Cathode. Advanced Functional Materials, 2019, 29, 1808378.	14.9	34
174	Splitâ€Gate Organic Fieldâ€Effect Transistors for Highâ€Speed Operation. Advanced Materials, 2014, 26, 2983-2988.	21.0	33
175	Extended and Modulated Thienothiophenes for Thermally Durable and Solution-Processable Organic Semiconductors. Chemistry of Materials, 2018, 30, 5050-5060.	6.7	33
176	A General Method for the Synthesis of Alkylenedithio- and Bis(alkylenedithio)tetraselenafulvalenes. Journal of Organic Chemistry, 2003, 68, 5217-5224.	3.2	32
177	Organic Superconductors Based on a New Electron Donor, Methylenedithio-diselenadithiafulvalene (MDT-ST). Chemistry of Materials, 2003, 15, 1225-1227.	6.7	32
178	Giant Nonlinear Conductivity and Spontaneous Current Oscillation in an Incommensurate Organic Superconductor. Physical Review Letters, 2008, 100, 037001.	7.8	32
179	Low-voltage organic transistor with subfemtoliter inkjet source-drain contacts. MRS Communications, 2011, 1, 3-6.	1.8	32
180	Thienothiopheneâ€2,5â€Dioneâ€Based Donor–Acceptor Polymers: Improved Synthesis and Influence of the Donor Units on Ambipolar Charge Transport Properties. Advanced Electronic Materials, 2015, 1, 1500039.	5.1	32

#	Article	IF	CITATIONS
181	Dibenzo[a,e]pentalene-embedded dicyanomethylene-substituted thienoquinoidals for n-channel organic semiconductors: synthesis, properties, and device characteristics. Journal of Materials Chemistry C, 2015, 3, 283-290.	5.5	32
182	Electrochemical and spectroscopic properties of oligoselenophenes. Synthetic Metals, 1997, 84, 341-342.	3.9	31
183	Syntheses of 2-(Pentafluorophenyl)thiophene Derivatives via the Palladium-Catalyzed Suzuki Reaction. Synthesis, 2005, 2005, 1589-1592.	2.3	31
184	Crisscross-overlapped tetrathiafulvalenophanes. Tetrahedron Letters, 1995, 36, 5045-5048.	1.4	31
185	Synthesis and Characterization of the First Double-Bridged Tetraselenafulvalenophanes. Angewandte Chemie - International Edition, 1998, 37, 619-622.	13.8	30
186	α,ï‰-Bis(quinquethienyl)alkanes as a ï€-Dimer Model of Polythiophene. Organic Letters, 2004, 6, 997-1000.	4.6	29
187	Effects of Extension or Prevention of π-Conjugation on Photoinduced Electron Transfer Processes of Ferroceneâ^'Oligothiopheneâ^'Fullerene Triads. Journal of Physical Chemistry A, 2006, 110, 3471-3479.	2.5	29
188	5-Hexylthiophene-fused porphyrazines: new soluble phthalocyanines for solution-processed organic electronic devices. Journal of Materials Chemistry, 2009, 19, 5913.	6.7	29
189	The effect of alkyl chain branching positions on the electron mobility and photovoltaic performance of naphthodithiophene diimide (NDTI)-based polymers. Science China Chemistry, 2019, 62, 1649-1655.	8.2	28
190	New Organic Superconductors with an Incommensurate Anion Lattice Consisting of Polyhalide Chains (MDT-TSF)Xy(MDT-TSF = Methylenedithiotetraselenafulvalene;X= Halogen;y= 1.27â^1.29). Chemistry of Materials, 2003, 15, 3250-3255.	6.7	27
191	Pressure-Induced Superconductivity in (MDT-TS)(AuI2)0.441[MDT-ÂTS = 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6-tetrathiapentalene]:Â A New Organic Superconductor Possessing an Incommensurate Anion Lattice. Chemistry of Materials, 2004, 16, 5120-5123.	6.7	27
192	Synthesis, Characterization, and Spectroscopic Analysis of Antiaromatic Benzofused Metalloporphyrins. Chemistry - A European Journal, 2012, 18, 3566-3581.	3.3	27
193	Small band gap polymers incorporating a strong acceptor, thieno[3,2-b]thiophene-2,5-dione, with p-channel and ambipolar charge transport characteristics. Journal of Materials Chemistry C, 2014, 2, 2307-2312.	5.5	27
194	Methylthionated benzo[1,2-b:4,5-bâ€2]dithiophenes: a model study to control packing structures and molecular orientation in thienoacene-based organic semiconductors. Chemical Communications, 2017, 53, 9594-9597.	4.1	27
195	Incommensurate anion potential effect on the electronic states of the organic superconductor (MDT-TSF)(AuI2)0.436. Physical Review B, 2003, 67, .	3.2	26
196	Bis(naphthothiophene diimide)indacenodithiophenes as Acceptors for Organic Photovoltaics. Chemistry of Materials, 2017, 29, 9618-9622.	6.7	26
197	Synthesis, Structures, and Properties of Two Isomeric Naphthodithiophenes and Their Methyl, Methylthio, and 2-Thienyl Derivatives; Application to Conductive Charge-Transfer Complexes and Low-Bandgap Polymers. Bulletin of the Chemical Society of Japan, 2002, 75, 1795-1805.	3.2	25
198	Hybrid Organic Semiconductors Including Chalcogen Atoms in π-Conjugated Skeletons. Tuning of Optical, Redox, and Vibrational Properties by Heavy Atom Conjugation. Journal of Physical Chemistry A, 2006, 110, 7422-7430.	2.5	25

#	Article	IF	CITATIONS
199	Fluorescence Up-Conversion Study of Excitation Energy Transport Dynamics in Oligothiopheneâ^`Fullerene Linked Dyads. Journal of Physical Chemistry A, 2008, 112, 1125-1132.	2.5	25
200	Facile synthesis of [1]benzothieno[3,2-b]benzothiophene from o-dihalostilbenes. Tetrahedron Letters, 2010, 51, 5277-5280.	1.4	25
201	Observation of field-induced charge carriers in high-mobility organic transistors of a thienothiophene-based small molecule: Electron spin resonance measurements. Physical Review B, 2011, 84, .	3.2	25
202	Novel Conductive Radical Cation Salts Based on Methylenediselenotetraselenafulvalene (MDSe-TSF): A Sign of Superconductivity in κ-(MDSe-TSF)2Br Below 4 K. Journal of Solid State Chemistry, 2002, 168, 582-589.	2.9	24
203	Towards Colorless Transparent Organic Transistors: Potential of Benzothieno[3,2â€ <i>b</i>]benzothiopheneâ€Based Wideâ€Gap Semiconductors. Advanced Materials, 2014, 26 3105-3110.	, 21.0	24
204	Dithiophene-Fused Tetracyanonaphthoquinodimethanes (DT-TNAPs): Synthesis and Characterization of Ĩ€-Extended Quinoidal Compounds for n-Channel Organic Semiconductor. Organic Letters, 2014, 16, 240-243.	4.6	24
205	Cumulative gain in organic solar cells by using multiple optical nanopatterns. Journal of Materials Chemistry A, 2017, 5, 10347-10354.	10.3	24
206	Double-Layered Tetrathiafulvalene as a Novel Electron Donor. Chemistry Letters, 1995, 24, 523-524.	1.3	23
207	Crisscross-Overlapped Tetrathiafulvalenophanes. Tetrahedron Letters, 1995, 36, 5045-5048.	1.4	23
208	Synthesis and Spectral Properties of a Highly Soluble Pushâ^'Pull Type of Quinoidal Thiophenes. Organic Letters, 2005, 7, 4313-4316.	4.6	23
209	Anion effects on the cyclobis(paraquat-p-phenylene) host. Chemical Communications, 2012, 48, 5157.	4.1	23
210	Angular-shaped naphthodifurans, naphtho[1,2-b;5,6-bâ€2]- and naphtho[2,1-b;6,5-bâ€2]-difuran: are they isoelectronic with chrysene?. Chemical Communications, 2012, 48, 5671.	4.1	23
211	Effects of branching position of alkyl side chains on ordering structure and charge transport property in thienothiophenedione- and quinacridone-based semiconducting polymers. Polymer Journal, 2017, 49, 169-176.	2.7	23
212	Double-Bridged Tetrathiafulvalenophanes as Novel Electron Donors: Syntheses, Structures, and Properties of Three Structural Isomers. Chemistry Letters, 1995, 24, 735-736.	1.3	22
213	One-Pot Synthesis of Heterocycle-Fused 1,3-Diselenole-2-selones as the Key Precursors of Tetraselenafulvalene-Type Electron Donors. Organic Letters, 1999, 1, 23-26.	4.6	22
214	Electronic state anisotropy and the Fermi surface topology of the incommensurate organic superconducting crystal (MDT-TSF)(Aul \$mathsf{_2}\$) \$mathsf{_{0.436}}\$. European Physical Journal B, 2003, 36, 161-167.	1.5	22
215	Fullerene-tethered oligothiophenes as advanced molecular electronics materials. Pure and Applied Chemistry, 2005, 77, 2003-2010.	1.9	22
216	Thiacycle-fused benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophenes (BDTs): synthesis, packing, molecular orientation and semiconducting properties. Journal of Materials Chemistry C, 2018, 6, 3604-3612.	5.5	22

#	Article	IF	CITATIONS
217	Thienoquinoidal System: Promising Molecular Architecture for Optoelectronic Applications. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 1176-1184.	0.1	22
218	Anomalous Pressure Effect in Heteroacene Organic Field-Effect Transistors. Physical Review Letters, 2013, 110, 096603.	7.8	21
219	A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements. Semiconductor Science and Technology, 2016, 31, 025011.	2.0	21
220	Syntheses and Properties of Dimethyl and Tetramethyl Anthra[1,9-cd: 4,10-c′d′]bis[1,2]dichalcogenoles and Their Charge-Transfer Complexes. Bulletin of the Chemical Society of Japan, 1991, 64, 2091-2102.	3.2	20
221	Single-Crystal Field-Effect Transistors Based on Organic Selenium-Containing Semiconductor. Japanese Journal of Applied Physics, 2005, 44, 3712-3714.	1.5	20
222	Electroconductive π-Junction Au Nanoparticles. Bulletin of the Chemical Society of Japan, 2012, 85, 957-961.	3.2	20
223	Ultraviolet photoelectron spectra of 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene and dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene. Chemical Physics Letters, 2013, 563, 55-57.	2.6	20
224	Naphthodithiophenes: Emerging Building Blocks for Organic Electronics. Chemical Record, 2015, 15, 175-188.	5.8	20
225	Synthesis and properties of bitetraselenafulvalene. Tetrahedron Letters, 1999, 40, 5729-5730.	1.4	19
226	Improved Synthesis of Double-Bridged Tetraselenafulvalenophanes and Formation of Their Conductive Radical Cation Salts. European Journal of Organic Chemistry, 2000, 2000, 3013-3019.	2.4	19
227	Simple Oligothiophene-Based Dyes for Dye-Sensitized Solar Cells (DSSCs): Anchoring Group Effects on Molecular Properties and Solar Cell Performance. Bulletin of the Chemical Society of Japan, 2011, 84, 459-465.	3.2	19
228	Tuning Spin Current Injection at Ferromagnet-Nonmagnet Interfaces by Molecular Design. Physical Review Letters, 2020, 124, 027204.	7.8	19
229	A Flexible Cyclophane: Design, Synthesis, and Structure of a Multibridged Tris-tetrathiafulvalene (TTF) Macrocycle. Chemistry - A European Journal, 2000, 6, 1947-1954.	3.3	18
230	Organic Field-Effect Transistors Using Di(2-thienyl)naphthodithiophenes as Active Layers. Chemistry Letters, 2002, 31, 958-959.	1.3	18
231	Selenium-Containing π-Conjugated Compounds for Electronic Molecular Materials. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 873-881.	1.6	18
232	Borylation on Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]- and Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dichalcogenophenes: Different Chalcogene Atom Effects on Borylation Reaction Depending on Fused Ring Structure. Organic Letters, 2012, 14, 5448-5451.	4.6	18
233	5,10-Diborylated naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole: a ready-to-use precursor for the synthesis of high-performance semiconducting polymers. Polymer Chemistry, 2013, 4, 5224.	3.9	18
234	Dithienyl Acenedithiophenediones as New Ï€â€Extended Quinoidal Cores: Synthesis and Properties. Chemistry - A European Journal, 2017, 23, 4579-4589.	3.3	18

#	Article	IF	CITATIONS
235	Synthesis of Soluble Dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene (DNTT) Derivatives: One-Step Functionalization of 2-Bromo-DNTT. Journal of Organic Chemistry, 2020, 85, 195-206.	3.2	18
236	Syntheses and Properties of 11,11,12,12-Tetracyano-2,6-anthraquinodimethane (TANT) and Its 9,10-Dichloro Derivative as Novel Extensive Electron Acceptors. Bulletin of the Chemical Society of Japan, 1998, 71, 1431-1435.	3.2	17
237	Synthesis, Structures, and Properties of a Series of Double-Bridged Tetrathiafulvalenophanes as Novel Electron Donors for Conductive Radical Cation Saltsâ€. Chemistry of Materials, 2000, 12, 2196-2204.	6.7	17
238	Oligo(octithienylene-diethynylene)s as Unprecedentedly Long Conjugated Nanomolecules. Organic Letters, 2002, 4, 2533-2536.	4.6	17
239	Controlling the crystal formation in solution-process for organic field-effect transistors with high-performance. Organic Electronics, 2012, 13, 2975-2984.	2.6	17
240	A Surface Potential Based Organic Thin-Film Transistor Model for Circuit Simulation Verified With DNTT High Performance Test Devices. IEEE Transactions on Semiconductor Manufacturing, 2014, 27, 159-168.	1.7	17
241	Analyses of Thiophene-Based Donor–Acceptor Semiconducting Polymers toward Designing Optical and Conductive Properties: A Theoretical Perspective. Journal of Physical Chemistry C, 2016, 120, 8305-8314.	3.1	17
242	"Heavy-atom effects―in the parent [1]benzochalcogenopheno[3,2- <i>b</i>][1]benzochalcogenophene system. Journal of Materials Chemistry C, 2020, 8, 15119-15127.	5.5	17
243	11,11,12,12-Tetracyano-2,6-anthraquinodimethane (TANT) as a novel extensive electron acceptor. Journal of the Chemical Society Chemical Communications, 1993, , 519.	2.0	16
244	Metallic Properties of 1:1 Charge-Transfer Salt, Dimethyltetraselenoanthracene-Tetrafluoroborate (DMTSA-BF4). Journal of the Physical Society of Japan, 1998, 67, 971-977.	1.6	16
245	A Novel Tetrathiafulvalene Building Block. Synthesis, 1999, 1999, 803-810.	2.3	16
246	Dendrimer-Encapsulated Oligothiophenes. Chemistry Letters, 2004, 33, 1154-1155.	1.3	16
247	Oligothiophene-multifullerene linkage molecules as high performance photovoltaic materials. Synthetic Metals, 2005, 152, 125-128.	3.9	16
248	Flexible air-stable three-dimensional polymer field-effect transistors with high output current density. Organic Electronics, 2013, 14, 2908-2915.	2.6	16
249	2-V operated flexible vertical organic transistor with good air stability and bias stress reliability. Organic Electronics, 2017, 50, 325-330.	2.6	16
250	Syntheses, structures and properties of phenanthro[1,10-cd:8,9-c′d′]bis[1,2]-dithiole and -diselenole and their methyl and methylthio derivatives as novel electron donors. Journal of Materials Chemistry, 1995, 5, 1539-1547.	6.7	15
251	Novel Stable Metallic Salts Based on a Donor Molecule Containingperi-Ditellurium Bridges, TMTTeN. Inorganic Chemistry, 1998, 37, 2850-2851.	4.0	15
252	Effective Synthesis of 1,3-Diselenole-2-selone-4,5-diselenolate (dsis) and its Utilization for the Synthesis of Selenocycle-fused Tetraselenafulvalene (TSF) Derivatives. Synthesis, 2001, 2001, 1614-1618.	2.3	15

#	Article	IF	CITATIONS
253	Synthesis and Structures of Highly Conducting Charge-Transfer Salts of Selenium Containing TTM-TTP Derivatives. Bulletin of the Chemical Society of Japan, 2004, 77, 1449-1458.	3.2	15
254	Superconductivity competing with the incommensurate antiferromagnetic insulating state in the organic conductor (MDT-TS)(AuI2)0.441. Physical Review B, 2005, 71, .	3.2	15
255	Current-Induced Metallic State in an Organic (EDT-TSF)2GaCl4Conductor. Journal of the American Chemical Society, 2006, 128, 9006-9007.	13.7	15
256	Solution-processed single-crystalline organic transistors on patterned ultrathin gate insulators. Organic Electronics, 2014, 15, 1184-1188.	2.6	15
257	<i>N</i> , <i>N</i> ′-Unsubstituted Naphthodithiophene Diimide: Synthesis and Derivatization via< <i>N</i> Alkylation and -Arylation. Organic Letters, 2016, 18, 3770-3773.	4.6	15
258	Reversible Dimerization and Polymerization of a Janus Diradical To Produce Labile Câ^'C Bonds and Large Chromic Effects. Angewandte Chemie, 2016, 128, 14783-14788.	2.0	15
259	Solution-crystallized n-type organic thin-film transistors: An impact of branched alkyl chain on high electron mobility and thermal durability. Organic Electronics, 2018, 62, 548-553.	2.6	15
260	Synthesis and Properties of Bis(ethyleneseleno)tetrathiafulvalene (BES-TTF) and Diselenolotetrathiafulvalene (DS-TTF) as Novel Electron Donors. Chemistry Letters, 1997, 26, 1091-1092.	1.3	14
261	Halogen substituted tetraselenafulvalene derivatives. Synthetic Metals, 2001, 120, 875-876.	3.9	14
262	Synthesis and Properties of Higher-Order Tetrathiafulvalene Oligomers up to the Dodecamer. European Journal of Organic Chemistry, 2001, 2001, 2983.	2.4	14
263	Efficient Photocurrent Generation at Dinaphtho[2,3- <i>b</i> :2',3'- <i>f</i>]thieno[3,2- <i>b</i>]thiophene/C ₆₀ Bilayer Interface. Applied Physics Express, 2011, 4, 061602.	2.4	14
264	Droplet Manipulation by an External Electric Field for Crystalline Film Growth. Langmuir, 2013, 29, 9592-9597.	3.5	14
265	Low-temperature carrier dynamics in high-mobility organic transistors of alkylated dinaphtho-thienothiophene as investigated by electron spin resonance. Applied Physics Letters, 2014, 105, .	3.3	14
266	Two isomeric perylenothiophene diimides: physicochemical properties and applications in organic semiconducting devices. Journal of Materials Chemistry C, 2019, 7, 2267-2275.	5.5	14
267	Gate-tunable gas sensing behaviors in air-stable ambipolar organic thin-film transistors. RSC Advances, 2020, 10, 1910-1916.	3.6	14
268	Naphtho[1,8-bc : 5,4-b′c′]dithiophene: a new heteroarene isoelectronic with pyrene. Journal of the Chemical Society Chemical Communications, 1994, , 1859-1860.	2.0	13
269	Synthesis and properties of novel heterocycle-fused TTF-type electron donors: bis(propylenethio)tetrathiafulvalene (BPT-TTF), bis(propyleneseleno)tetrathiafulvalene (BPS-TTF), and their tetraselenafulvalene analogues (BPT-TSF and BPS-TSF). Journal of Materials Chemistry, 2001, 11, 1026-1033	6.7	13
270	Synthesis and Photovoltaic Properties of Tetrathiafulvalene–Oligothiophene–Fullerene Triads. Chemistry Letters, 2006, 35, 668-669.	1.3	13

#	Article	IF	CITATIONS
271	Organic Field-Effect Transistors Based on 2,6-Diphenylbenzo [1,2-b:5,4-bâ€2]-Dithiophene and -Diselenophene (iso-DPh-BDXs). Molecular Crystals and Liquid Crystals, 2006, 455, 361-365.	0.9	13
272	Two-Photon Mediated Three-Photon Fluorescence: Lessons from a Quinoidal Oligothiophene Dimer. Journal of Physical Chemistry Letters, 2011, 2, 2179-2183.	4.6	13
273	High mobility organic thin-film transistors on plastic substrate. Current Applied Physics, 2012, 12, e2-e5.	2.4	13
274	Effect of non-chlorinated solvents on the enhancement of field-effect mobility in dioctylbenzothienobenzothiophene-based top-gate organic transistors processed by spin coating. Organic Electronics, 2019, 69, 181-189.	2.6	13
275	Novel tellurium containing fulvalene-type electron donors, triselenatellurafulvalene (TSTeF) and diselenaditellurafulvalene (DSDTeF); synthesis, conductivities and crystal structures of their TCNQ complexes. Journal of Materials Chemistry, 2001, 11, 2431-2436.	6.7	12
276	Syntheses, Structures, and Spectroscopic Properties of Push-Pull Heteroquinoid Compounds. Heterocycles, 2007, 71, 253.	0.7	12
277	Antiferromagnetic ordering of the incommensurate organic superconductor (MDT-TS)(AuI2)0.441with a high spin-flop field. Physical Review B, 2008, 77, .	3.2	12
278	[1]Benzothieno[3,2-b][1]benzothiophenes- and dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene-based organic semiconductors for stable, high-performance organic thin-film transistor materials. Thin Solid Films, 2014, 554, 13-18.	1.8	12
279	Selective thionation of naphtho[2,3-b]thiophene diimide: tuning of the optoelectronic properties and packing structure. Organic Chemistry Frontiers, 2017, 4, 704-710.	4.5	12
280	High-performance solution-processed organic thin-film transistors based on a soluble DNTT derivative. Organic Electronics, 2017, 46, 68-76.	2.6	12
281	Effects of Selenium Atoms on [1]Benzochalcogenopheno[3,2- <i>b</i>][1]benzochalcogenophene-based Organic Semiconductors. Chemistry Letters, 2017, 46, 345-347.	1.3	12
282	A Design Principle for Polar Assemblies with C ₃ ‣ym Bowl‣haped π onjugated Molecules. Angewandte Chemie - International Edition, 2021, 60, 3261-3267.	13.8	12
283	Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Lowâ€Disorder Molecular Semiconductors. Advanced Materials, 2021, 33, e2008708.	21.0	12
284	Positional Order and Disorder of Symmetric and Unsymmetric BEDT-STF Salts. Journal of Solid State Chemistry, 2002, 168, 626-631.	2.9	11
285	Synthesis and Structures of Neutral Crystals and Charge-Transfer Salts of Selenium Containing TMET-TTP Derivatives. Bulletin of the Chemical Society of Japan, 2003, 76, 2091-2097.	3.2	11
286	Fermi surface of the organic superconductor(MDTâ^'ST)(I3)0.417reconstructed by incommensurate potential. Physical Review B, 2006, 73, .	3.2	11
287	Conductive, Magnetic, and Optical Properties of Sterically Hindered Dodecithiophenes. Evidence for the Coexistence of Bipolaron and π-Dimer. Bulletin of the Chemical Society of Japan, 2007, 80, 1799-1807.	3.2	11
288	Facile Syntheses of Anthra[2,3-b]chalcogenophenes. Synthesis, 2012, 44, 2102-2106.	2.3	11

#	Article	IF	CITATIONS
289	Quinacridone-Diketopyrrolopyrrole-Based Polymers for Organic Field-Effect Transistors. Materials, 2013, 6, 1061-1071.	2.9	11
290	Controlled steric selectivity in molecular doping towards closest-packed supramolecular conductors. Communications Materials, 2020, 1, .	6.9	11
291	Two Isomeric Didecyl-dinaphtho[2,3- <i>b</i> :2',3'- <i>f</i>]thieno[3,2- <i>b</i>]thiophenes: Impact of Alkylation Positions on Packing Structures and Organic Field Effect Transistor Characteristics. Japanese Journal of Applied Physics, 2012, 51, 11PD04.	1.5	11
292	Facile Preparation and Charge-Transfer Complexes of Naphtho[1,8-bc:4,5-b′c′]dithiophene and 2,5-Dimethyl and Bis(methylthio) Derivatives. Chemistry Letters, 1993, 22, 365-368.	1.3	10
293	Pyranylidenemethyl- and Thiopyranylidenemethyl-substituted Furans, Thiophenes, andN-Methylpyrroles as Precursors of Organic Metals and Third-order Nonlinear Optical Materials. Chemistry Letters, 1994, 23, 255-258.	1.3	10
294	Synthesis and properties of trimethylenedithio-bridged tetrathiafulvalenophanes. Synthetic Metals, 1997, 86, 1891-1892.	3.9	10
295	Spectroscopic Study of Isostructural Charge-Transfer Salts: Non-metallic DMTTA-BF4and Metallic DMTSA-BF4. Journal of the Physical Society of Japan, 1999, 68, 3708-3716.	1.6	10
296	Synthetic Methods of Selenium- and Tellurium Variants of Tetrathiafulvalene Electron Donors. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 171, 231-253.	1.6	10
297	Aminopropyl–Glucose Sequentially Grafted Mesoporous Silica Nanocomposite as a Novel Boron Adsorbent. Chemistry Letters, 2004, 33, 1582-1583.	1.3	10
298	Sub-5fs time-resolved dynamic Franck–Condon overlaps associated with the S1→S0 stimulated transition in oligothiophene 13-mer. Chemical Physics Letters, 2005, 409, 224-229.	2.6	10
299	A Practical Two-Step Synthesis of Tetraselenafulvalene (TSF). Synthesis, 2005, 2005, 2810-2813.	2.3	10
300	Thin Film Characteristics and FET Performances of β-Octyl-substituted Long Oligothiophenes. Chemistry Letters, 2006, 35, 942-943.	1.3	10
301	A high mobility ambipolar field effect transistor using a 2,6-diphenylbenzo[1,2-b:4,5-b ′]diselenophene/fullerene double layer. Solid State Communications, 2008, 145, 114-117.	1.9	10
302	Synthesis and Characterization of <i>N</i> -Acyl-substituted PyrroloTTF Derivatives and Improved Air-stability of PyrroloTTF-based OFETs. Chemistry Letters, 2008, 37, 1088-1089.	1.3	10
303	Low-voltage, high-mobility organic thin-film transistors with improved stability. , 2010, , .		10
304	Organic photovoltaics based on 5-hexylthiophene-fused porphyrazines. Organic Electronics, 2012, 13, 1975-1980.	2.6	10
305	Low optical turn-on voltage in solution processed hybrid light emitting transistor. Applied Physics Letters, 2019, 115,	3.3	10
306	Crystal Structures of Dimethoxyanthracens: A Clue to a Rational Design of Packing Structures of π onjugated Molecules. Chemistry - an Asian Journal, 2020, 15, 915-919.	3.3	10

#	Article	IF	CITATIONS
307	Crystal Structures of β-Methylchalcogenated Tetrathienoacenes: From One-Dimensional π-Stacking to Sandwich Pitched π-Stacking Structure. Crystal Growth and Design, 2021, 21, 4055-4063.	3.0	10
308	BIS(ethylenethio)tetraselenafulvalene and Related Hybrid Diselenadithiafulvalenes as Novel Electron Donors Forming Highly Conductive Complexes with 7,7,8,8-Tetracyanoquinodimethane. Heterocycles, 2001, 54, 225.	0.7	10
309	1,3,6,8-Tetrakis(methylchalcogeno)pyrenes: Effects of Chalcogen Atoms on the Crystal Structure and Transport Properties. Chemistry of Materials, 2022, 34, 6606-6616.	6.7	10
310	2,3-Dimethyl and 2,3,6,7-Tetramethyl Derivatives of Anthra[1,9-cd:4,10-c′d′]bis[1,2]dichalcogenoles as New Electron Donors. Chemistry Letters, 1990, 19, 567-570.	1.3	9
311	Dimethyl and tetramethyl derivatives of anthra[1,9-cd:4, 10-c'd']- and naphthaceno[5,6-cd:11,12-c'd']-bis[1,2]dichalcogenoles. Synthetic Metals, 1991, 42, 2389-2392.	3.9	9
312	Highly Conducting 1:1 Radical Cation Salts: (DMTSA)X With X = NO3 and BF4. Molecular Crystals and Liquid Crystals, 1997, 296, 197-204.	0.9	9
313	New hybrid tetrachalcogenofulvalenes: diselenaditellurafulvalene and its dimethyl derivative. Chemical Communications, 1997, , 1925.	4.1	9
314	The First Electrochemically Active Cuppedophanes:  Bis(tetrathiafulvalene)cuppedophanes. Organic Letters, 2000, 2, 2471-2473.	4.6	9
315	Charge transfer degree and superconductivity of the incommensurate organic superconductor(MDTâ^'TSF)(I3)0.422. Physical Review B, 2006, 73, .	3.2	9
316	The Elusive Ethenediselone, Se=C=C=Se. Australian Journal of Chemistry, 2014, 67, 1195.	0.9	9
317	N,N′-Bis(2-cyclohexylethyl)naphtho[2,3-b:6,7-b′]dithiophene Diimides: Effects of Substituents. Molecules, 2016, 21, 981.	3.8	9
318	Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding. Journal of Organic Chemistry, 2017, 82, 2123-2128.	3.2	9
319	Low voltage operating organic light emitting transistors with efficient charge blocking layer. Organic Electronics, 2021, 88, 106024.	2.6	9
320	Phenanthro[1,10-cd:8,9-c′d′]bis[1,2]-dithiole and -diselenole as novel electron donors. Journal of the Chemical Society Chemical Communications, 1992, , 278-280.	2.0	8
321	Crystal structures and electrical conductivities of cation-radical salts of a tellurium-containing donor: 3,4-dimethylanthra [1,9-cd:4,10-c′d′]bis[1,2]- ditellurole. Chemical Communications, 1997, , 593-594	4.1	8
322	Synthesis and Properties of (Propyleneditelluro)tetrathiafulvalene Donors. Tetrahedron Letters, 1997, 38, 7569-7572.	1.4	8
323	Control of electronic states by bandwidth and band filling in organic conductors. Synthetic Metals, 2001, 120, 979-980.	3.9	8
324	Structures and Transport Properties of New Molecular Conductors Based on TMEO-ST-TTP. Journal of Solid State Chemistry, 2002, 168, 608-615.	2.9	8

#	Article	IF	CITATIONS
325	Structural and transport properties of the incommensurate organic superconductor(MDTâ^'ST)(I3)0.417. Physical Review B, 2005, 71, .	3.2	8
326	Organic superconductors with an incommensurate anion structure. Science and Technology of Advanced Materials, 2009, 10, 024303.	6.1	8
327	Solution-processed dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene transistor memory based on phosphorus-doped silicon nanoparticles as a nano-floating gate. Applied Physics Express, 2015, 8, 101601.	2.4	8
328	High-performance didodecylbenzothienobenzothiophene-based top-gate organic transistors processed by spin coating using binary solvent mixtures. Organic Electronics, 2018, 58, 306-312.	2.6	8
329	Synthesis of Thiopheneâ€annulated Naphthalene Diimideâ€based Smallâ€Molecular Acceptors via Twoâ€step Câ°'H Activation. Chemistry - an Asian Journal, 2019, 14, 1651-1656.	3.3	8
330	Bandlike versus Temperature-Independent Carrier Transport in Isomeric Diphenyldinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophenes. , 2022, 4, 675-681.		8
331	Methyl and dimethyl derivatives of tetrathionaphthalene and tetraselenonaphthalene as novel electron donors. Heteroatom Chemistry, 2001, 12, 287-292.	0.7	7
332	Anisotropic Three-dimensional Superconductivity of the Incommensurate Organic Superconductor (MDT-ST)(I3)0.417. Journal of the Physical Society of Japan, 2005, 74, 1529-1533.	1.6	7
333	Thermodynamic Study of an Incommensurate Organic Superconductor (MDT-TSF)(AuI2)0.436. Journal of the Physical Society of Japan, 2006, 75, 074606.	1.6	7
334	Unique Molecular Arrangement in Semiconducting Layer and FET Characteristics of Thin Film Transistors Based on 2,6-Dialkylbenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]diselenophenes (C <i>n</i> BDSs). Chemistry Letters, 2009, 38, 352-353.	1.3	7
335	Molecular Modification of 2,7-Diphenyl[1]benzothieno[3,2- <i>b</i>]benzothiophene (DPh-BTBT) with Diarylamino Substituents: From Crystalline Order to Amorphous State in Evaporated Thin Films. Chemistry Letters, 2009, 38, 420-421.	1.3	7
336	Spatial control of the threshold voltage of low-voltage organic transistors by microcontact printing of alkyl- and f luoroalkyl-phosphonic acids. MRS Communications, 2011, 1, 33-36.	1.8	7
337	Achieving high efficiency and stability in inverted organic solar cells fabricated by laminated gold leaf as top electrodes. Applied Physics Express, 2014, 7, 111602.	2.4	7
338	Modeling of Drain Current Mismatch in Organic Thin-Film Transistors. Journal of Display Technology, 2015, 11, 559-563.	1.2	7
339	Synthesis and Properties of Ethylenethiotetra- selenafulvalene (ET-TSF) and Its Conductive Radical Cation Salts. Heterocycles, 2006, 67, 655.	0.7	7
340	Designs and Synthesis of Novel Electron Donors of Non-TTF Types and Formation of Their Conducting Molecular Complexes Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1996, 54, 752-760.	0.1	6
341	Synthesis and properties of new PDT- and TPDT-TTP analogues. Synthetic Metals, 1999, 102, 1621-1622.	3.9	6
342	Conducting complexes of TTF and TSF derivatives fused with selenium-containing five-membered rings. Synthetic Metals, 1999, 102, 1714-1715.	3.9	6

#	Article	IF	CITATIONS
343	Synthesis and Properties of Selenium Containing dmit-type Complexes. Molecular Crystals and Liquid Crystals, 2002, 379, 65-70.	0.9	6
344	Changes in Electrochemical and Optical Properties of Oligoalkylthiophene Film Induced by Bipolaron Formation. Journal of Physical Chemistry B, 2006, 110, 1529-1535.	2.6	6
345	Effect of Oxygenâ€Containing Functional Side Chains on the Electronic Properties and Photovoltaic Performances in a Thiophene–Thiazolothiazole Copolymer System. Heteroatom Chemistry, 2014, 25, 556-564.	0.7	6
346	lonic manipulation of charge-transfer and photodynamics of [60]fullerene confined in pyrrolo-tetrathiafulvalene cage. Chemical Communications, 2017, 53, 9898-9901.	4.1	6
347	Carbonyl-Terminated Quinoidal Oligothiophenes as p-Type Organic Semiconductors. Materials, 2020, 13, 3020.	2.9	6
348	Low-energy optical transitions in organic metal DMTSA–BF4. Solid State Communications, 1999, 110, 63-68.	1.9	5
349	Alkylene- or alkylenedithio-linked dimeric tetraselenafulvalenes. Synthetic Metals, 1999, 102, 1605-1606.	3.9	5
350	Structural feature of radical cation salts based on TIP and its selenium analogues. Synthetic Metals, 1999, 102, 1675.	3.9	5
351	Low temperature X–ray and ESR study of Quasi–1D DMTCA–BF4 (C = S, Se) with half–filled band. Synthetic Metals, 2001, 120, 931-932.	3.9	5
352	Molecular Conductors Based onperi-Ditellurium-Bridged Donors,2,3-DMTTeA and TMTTeN. European Journal of Inorganic Chemistry, 2005, 2005, 3435-3449.	2.0	5
353	Two Isomeric Didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophenes: Impact of Alkylation Positions on Packing Structures and Organic Field Effect Transistor Characteristics. Japanese Journal of Applied Physics, 2012, 51, 11PD04.	1.5	5
354	5, 10-linked naphthodithiophenes as the building block for semiconducting polymers. Science and Technology of Advanced Materials, 2014, 15, 024201.	6.1	5
355	Packing structures of (trialkylsilyl)ethynyl-substituted dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophenes (DNTTs): effects of substituents on crystal structures and transport properties. Journal of Materials Chemistry C, 2022, 10, 2775-2782.	5.5	5
356	Developments of Peri-Dichalcogen-Bridged Fused Aromatic Hydrocarbons as Novel Electron Donors Forming Conductive Molecular Complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 1998, 136, 447-462.	1.6	4
357	New Stable Metallic Salt Based on a Donor Molecule Containingperi-Ditellurium Bridges, TMTTeN(SCN)0.88. Chemistry Letters, 1999, 28, 845-846.	1.3	4
358	Synthesis and Properties of Nano-Scale Oligothiophenes: From Conducting-Polymer Models to Materials for Molecular Electronics Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 52-61.	0.1	4
359	A Raman and Computational Study of Two Dithienyl Naphthodithiophenes:Â Synthesis and Characterization of New Polymers Showing Low Band Gap Optical and Electroactive Features. Journal of Physical Chemistry B, 2004, 108, 7611-7619.	2.6	4
360	Organic Superconductivity Enhanced by Asymmetric-Anion Random Potential in (MDT-TS)10.85Br0.41 [MDT-TS = 5H-2-(1,3-diselenole-2-ylidene)-1,3,4,6-tetrathiapentalene]. Chemistry of Materials, 2009, 21, 3521-3525.	6.7	4

#	Article	IF	CITATIONS
361	Benchmarking of a surface potential based organic thin-film transistor model against C <inf>10</inf> -DNTT high performance test devices. , 2013, , .		4
362	Amide-bridged terphenyl and dithienylbenzene units for semiconducting polymers. RSC Advances, 2016, 6, 16437-16447.	3.6	4
363	Naphtho[1,2â€ <i>b</i> :5,6â€ <i>b</i> â€2]dithiophene Building Blocks and their Complexation with Cyclobis(paraquatâ€ <i>p</i> â€phenylene). European Journal of Organic Chemistry, 2019, 2019, 7532-7540.	2.4	4
364	Structural Aspects of Iodine-Promoted One-Pot Cyclization of O-Bis(methylthio)stilbenes to Thieno[3,2-b]thiophene Derivatives: Synthetic Trials of Tetrathienoacenes from 1,2-Bis(3-methylthiothiophen-2-yl)ethenes. Heterocycles, 2008, 76, 583.	0.7	4
365	Effects of Conformation on Doping Efficiency in π-Extended Bipyranylidene Molecules: Relationship between Molecular Structure and Electron-Doping Ability for Developing n-Type Organic Thermoelectrics. Bulletin of the Chemical Society of Japan, 2022, 95, 1047-1053.	3.2	4
366	An annulene TCNQ derivative with rather weak acceptor properties. Canadian Journal of Chemistry, 1997, 75, 611-615.	1.1	3
367	Synthesis and properties of methylthio substituted ST-TTP derivatives. Synthetic Metals, 1999, 102, 1781-1784.	3.9	3
368	Novel selenium variants of BEDT-TTF. Synthetic Metals, 1999, 102, 1619-1620.	3.9	3
369	Structures and Properties of (TMEO-ST-TTP)2AsF6. Chemistry Letters, 1999, 28, 859-860.	1.3	3
370	Recent Development of Organic Conductors Containing Selenium Atoms: New Synthetic Methods, Electron Donors, and Conductors. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2004, 62, 150-161.	0.1	3
371	High-power three-dimensional polymer FETs. Current Applied Physics, 2012, 12, S92-S95.	2.4	3
372	Highly transparent thin-film transistors using wide-bandgap organic semiconductors and multilayer transparent electrodes. Journal of Information Display, 2014, 15, 59-63.	4.0	3
373	Air-stable and balanced split-gate organic transistors. Organic Electronics, 2018, 63, 200-206.	2.6	3
374	Two-dimensional radical–cationic Mott insulator based on an electron donor containing neither a tetrathiafulvalene nor tetrathiapentalene skeleton. CrystEngComm, 2020, 22, 5949-5953.	2.6	3
375	A Design Principle for Polar Assemblies with C 3 â€Sym Bowlâ€Shaped π onjugated Molecules. Angewandte Chemie, 2021, 133, 3298-3304.	2.0	3
376	Highly Electronâ€Donating Bipyranylidene Derivatives: Potential nâ€Type Dopants for Organic Thermoelectrics. Advanced Energy and Sustainability Research, 2021, 2, 2100084.	5.8	3
377	Dihedral-Angle Dependence of Intermolecular Transfer Integrals in BEDT-BDT-Based Radical-Cation Salts with Î, Type Molecular Arrangements. Crystals, 2021, 11, 868.	2.2	3
378	Development of Air stable Organic Semiconductors for p-Channel Thin-film Transistors. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 1224-1230.	0.1	3

#	Article	IF	CITATIONS
379	Enantiopure 2-(2-ethylhexyl)dinaphtho[2,3- <i>b</i> :2′,3′- <i>f</i>]thieno[3,2- <i>b</i>]thiophenes: synthesis, single-crystal structure and a surprising lack of influence of stereoisomerism on thin-film structure and electronic properties. Materials Horizons, 2022, 9, 444-451.	12.2	3
380	Three dimensional metals based on a tellurium-containing donors, TMTTeN and related conductors. Synthetic Metals, 1999, 103, 1865-1868.	3.9	2
381	Electronic structures of organic salt DMTSA-BF4 using photoelectron spectromicroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 1013-1018.	1.7	2
382	Synthesis and properties of novel unsymmetrical tetraselenafulvalene donors, EDT-PT-TSF and EDT-PS-TSF. Molecular Crystals and Liquid Crystals, 2002, 380, 189-195.	0.9	2
383	Incommensurate structure and the superconducting properties of the organic superconductor (MDT-ST)(I ₃) _{0.417} . European Physical Journal Special Topics, 2004, 114, 517-519.	0.2	2
384	Synthesis and characterizations of linear- and angular-shaped naphthodithiophenes for organic semiconductors. Proceedings of SPIE, 2011, , .	0.8	2
385	A Soluble α-Dithienotetrathiafulvalene Derivative for Organic Field-effect Transistors. Chemistry Letters, 2012, 41, 435-437.	1.3	2
386	Performance and stability of flexible low-voltage organic thin-film transistors based on C <inf>10</inf> -DNTT. , 2012, , .		2
387	Air-stable, low-voltage organic transistors: High-mobility thienoacene derivatives for unipolar and complementary ring oscillators on flexible substrates. , 2014, , .		2
388	Transparent Electrodes: Reverse-Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for High-Performance Organic Photovoltaics (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870190.	21.0	2
389	Highly-efficient terahertz emission from hydrogen-bonded single molecular crystal 4-nitro-2,5-bis(phenylethynyl)aniline. Optics Express, 2021, 29, 10048.	3.4	2
390	Quinoidâ€aromatic Resonance for Very Small Optical Energy Gaps in Smallâ€molecule Organic Semiconductors: a Naphthodithiophenedioneâ€oligothiophene triad system. Chemistry - A European Journal, 2021, 27, 15660-15670.	3.3	2
391	Electric and magnetic properties of a new conducting salt (DMTSA)2Cl (DMTSA =) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10 3.9	Tf 50 262 T
392	Characterization of the half-filled DMTSA-BF4 by optical and magnetic measurements. Synthetic Metals, 1997, 84, 633-634.	3.9	1
393	Structures and Properties of Radical Cation Salts of Novel Tetraselenafulvalene Derivatives (BPT-TSF,) Tj ETQq1 1 Crystals, 2002, 376, 47-52.	0.784314 0.9	rgBT /Over 1
394	Sodium Ion Effect on Photoinduced Electron Transfer of Porphyrin-Crown Ether-Affixed Quaterthiophene-[60]Fullerene Triad as a Gated Molecular Switch. ECS Transactions, 2006, 2, 51-62.	0.5	1
395	Thieno[3,4-c]pyrrole-incorporated quinoidal terthiophene with dicyanomethylene termini: synthesis, characterization, and redox properties. Tetrahedron Letters, 2010, 51, 4375-4377. Disordered polyhalide anion effect on the Fermi surface of the incommensurate organic	1.4	1
396	superconductor (MDT-TSF)I <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow /><mml:mrow><mml:mn>0.77</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> Br <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub>Br<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub>Br<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub>Br<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub></mml:msub></mml:math </mml:msub><td>3.2</td><td>1</td></mml:math </mml:msub></mml:math </mml:msub></mml:math 	3.2	1

#	Article	IF	CITATIONS
397	Three-Dimensional Organic Field-Effect Transistors Using Solution-Processed Thin Films of Benzothieno-Benzothiophene Derivatives. Molecular Crystals and Liquid Crystals, 2011, 539, 58/[398]-62/[402].	0.9	1
398	Low-voltage organic field-effect transistors for flexible electronics. , 2014, , .		1
399	Crystalline conjugated polymers for organic electronics. IOP Conference Series: Materials Science and Engineering, 2014, 54, 012016.	0.6	1
400	Organic Electronics: Towards Colorless Transparent Organic Transistors: Potential of Benzothieno[3,2â€ <i>b</i>]benzothiopheneâ€Based Wideâ€Gap Semiconductors (Adv. Mater. 19/2014). Advanced Materials, 2014, 26, 3163-3163.	21.0	1
401	Charge-carrier injection, extraction and trapping dynamics in organic thin-film transistors based on different organic semiconductors evaluated by displacement current measurements. , 2014, , .		1
402	Spatial extent of wave functions of charge carriers in a thienothiophene-based high-mobility molecular semiconductor. Applied Physics Express, 2020, 13, 041004.	2.4	1
403	Field-Induced Electron Spin Resonance of Site-Selective Carrier Accumulation in Field-Effect Transistors Composed of Organic Semiconductor Solid Solutions. Physical Review Applied, 2021, 16, .	3.8	1
404	Isotropic Uniaxial Strain Effect on the Incommensurate Organic Superconductor: (MDT-TS)(Aul ₂) _{0.441} . Journal of the Physical Society of Japan, 2008, 77, 014706.	1.6	1
405	Low-voltage organic transistors for flexible electronics. , 2014, , .		1
406	Raman Activities of Cyano-Ester Quinoidal Oligothiophenes Reveal Their Diradical Character and the Proximity of the Low-Lying Double Exciton State. Chemistry, 2022, 4, 329-344.	2.2	1
407	Metallic properties of 1:1 Charge-transfer salt DMTSA-BF4. Synthetic Metals, 1999, 103, 2208-2209.	3.9	0
408	A General Method for the Synthesis of Alkylenedithio- and Bis(alkylenedithio)tetraselenafulvalenes ChemInform, 2003, 34, no.	0.0	0
409	Synthesis and Structures of Neutral Crystals and Charge-Transfer Salts of Selenium Containing TMET-TTP Derivatives ChemInform, 2004, 35, no.	0.0	0
410	Recent Synthetic Advances of Tetrathiafulvalene-Based Organic Conductors. ChemInform, 2004, 35, no.	0.0	0
411	Recent Development of Organic Conductors Containing Selenium Atoms: New Synthetic Methods, Electron Donors, and Conductors. ChemInform, 2004, 35, no.	0.0	0
412	Synthesis and Photovoltaic Effects of Oligothiophenes Incorporated with Two [60]Fullerenes ChemInform, 2004, 35, no.	0.0	0
413	Selenium-Containing π-Conjugated Compounds for Electronic Molecular Materials ChemInform, 2005, 36, no.	0.0	0
414	Syntheses of 2-(Pentafluorophenyl)thiophene Derivatives via the Palladium-Catalyzed Suzuki Reaction ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
415	Synthesis and Spectral Properties of a Highly Soluble Push—Pull Type of Quinoidal Thiophenes ChemInform, 2006, 37, no.	0.0	Ο
416	Synthesis and Spectral Properties of Tris(Terphenylylpyridine)Iridium and Tris(Tritylphenylpyridine)Iridium Complexes as Novel Electrophosphorescent Materials. Molecular Crystals and Liquid Crystals, 2006, 455, 373-379.	0.9	0
417	Unusual Electrochemical Response of Oligoalkylthiophene Films: Involvement of Bipolarons. Molecular Crystals and Liquid Crystals, 2006, 455, 367-372.	0.9	0
418	Synthesis and Properties of N 1-(3-Methoxypropyl)-N 3-methylimidazolium Salts. Heterocycles, 2010, 82, 1317.	0.7	0
419	Synthesis, Structures, and Properties of Two Isomeric Naphthodithiophenes and Their Methyl, Methylthio and 2â€Thienyl Derivatives; Application to Conductive Chargeâ€Transfer Complexes and Lowâ€Bandgap Polymers ChemInform, 2002, 33, 128-128.	0.0	0
420	High-mobility organic thin-film transistors with photolithographically patterned top contacts. , 2011, , ,		0
421	Donor-Acceptor Semiconducting Polymers Based on Thiazole-Containing Fused-Rings for Organic Field-Effect Transistors. Kobunshi Ronbunshu, 2011, 68, 1-10.	0.2	0
422	ESR Anisotropy of Organic Semiconductor Molecules: Calculation and Experiment. Materials Research Society Symposia Proceedings, 2012, 1436, 6.	0.1	0
423	3D Organic Fieldâ€Effect Transistors: Flexible Threeâ€Dimensional Organic Fieldâ€Effect Transistors Fabricated by an Imprinting Technique (Adv. Mater. 38/2012). Advanced Materials, 2012, 24, 5276-5276.	21.0	0
424	Organic Thin-Film Transistors: Flexible Low-Voltage Organic Complementary Circuits: Finding the Optimum Combination of Semiconductors and Monolayer Gate Dielectrics (Adv. Mater. 2/2015). Advanced Materials, 2015, 27, 391-391.	21.0	0
425	Tuning the absorption range of naphthothiophene diimide-based acceptors for organic solar cells. Dyes and Pigments, 2019, 171, 107691.	3.7	0
426	Oligo(octithienylene-diethynylene)s as Unprecedentedly Long Conjugated Nanomolecules. , 2003, , 274.		0

Oligo(octithienylene-diethynylene)s as Unprecedentedly Long Conjugated Nanomolecules. , 2003, , 274. 426