
Daniel L Minor Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5266689/publications.pdf Version: 2024-02-01

DANIEL MINOR IR

#	Article	IF	CITATIONS
1	Measurement of the \hat{I}^2 -sheet-forming propensities of amino acids. Nature, 1994, 367, 660-663.	27.8	603
2	Context-dependent secondary structure formation of a designed protein sequence. Nature, 1996, 380, 730-734.	27.8	403
3	Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature, 2004, 429, 671-675.	27.8	402
4	Context is a major determinant of \hat{l}^2 -sheet propensity. Nature, 1994, 371, 264-267.	27.8	345
5	Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature, 2017, 552, 426-429.	27.8	274
6	The Polar T1 Interface Is Linked to Conformational Changes that Open the Voltage-Gated Potassium Channel. Cell, 2000, 102, 657-670.	28.9	174
7	K2P2.1 (TREK-1)–activator complexes reveal a cryptic selectivity filter binding site. Nature, 2017, 547, 364-368.	27.8	153
8	Structural Insight into KCNQ (Kv7) Channel Assembly and Channelopathy. Neuron, 2007, 53, 663-675.	8.1	151
9	Three-dimensional structure of the KChIP1–Kv4.3 T1 complex reveals a cross-shaped octamer. Nature Structural and Molecular Biology, 2006, 13, 987-995.	8.2	145
10	Coiled Coils Direct Assembly of a Cold-Activated TRP Channel. Neuron, 2006, 51, 201-212.	8.1	138
11	Structure of a Prokaryotic Sodium Channel Pore Reveals Essential Gating Elements and an Outer Ion Binding Site Common to Eukaryotic Channels. Journal of Molecular Biology, 2014, 426, 467-483.	4.2	129
12	Multiple modalities converge on a common gate to control K _{2P} channel function. EMBO Journal, 2011, 30, 3594-3606.	7.8	128
13	Transmembrane Helix Straightening and Buckling Underlies Activation of Mechanosensitive and Thermosensitive K2P Channels. Neuron, 2014, 84, 1198-1212.	8.1	109
14	Progress in the structural understanding of voltage-gated calcium channel (Ca _V) function and modulation. Channels, 2010, 4, 459-474.	2.8	99
15	A High-Throughput Functional Screen Identifies Small Molecule Regulators of Temperature- and Mechano-Sensitive K _{2P} Channels. ACS Chemical Biology, 2013, 8, 1841-1851.	3.4	86
16	Metabolic and thermal stimuli control K _{2P} 2.1 (TREK-1) through modular sensory and gating domains. EMBO Journal, 2012, 31, 3297-3308.	7.8	85
17	Voltage-gated sodium channel (Na _V) protein dissection creates a set of functional pore-only proteins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12313-12318.	7.1	83
18	Alanine-Scanning Mutagenesis Defines a Conserved Energetic Hotspot in the CaVα1 AID-CaVβ Interaction Site that Is Critical for Channel Modulation. Structure, 2008, 16, 280-294.	3.3	73

DANIEL L MINOR JR

#	Article	IF	CITATIONS
19	Bacterial Voltage-Gated Sodium Channels (BacNaVs) from the Soil, Sea, and Salt Lakes Enlighten Molecular Mechanisms of Electrical Signaling and Pharmacology in the Brain and Heart. Journal of Molecular Biology, 2015, 427, 3-30.	4.2	69
20	Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation. Cell, 2016, 164, 922-936.	28.9	65
21	Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation. Journal of General Physiology, 2009, 133, 327-343.	1.9	64
22	A Calmodulin C-Lobe Ca2+-Dependent Switch Governs Kv7 Channel Function. Neuron, 2018, 97, 836-852.e6.	8.1	63
23	K _{2P} channel C-type gating involves asymmetric selectivity filter order-disorder transitions. Science Advances, 2020, 6, .	10.3	52
24	A green fluorescent protein screen for identification of wellâ€expressed membrane proteins from a cohort of extremophilic organisms. Protein Science, 2009, 18, 121-133.	7.6	50
25	Apo States of Calmodulin and CaBP1 Control CaV1 Voltage-Gated Calcium Channel Function through Direct Competition for the IQ Domain. Journal of Molecular Biology, 2013, 425, 3217-3234.	4.2	50
26	The Neurobiologist's Guide to Structural Biology: AÂPrimer on Why Macromolecular Structure Matters and How to Evaluate Structural Data. Neuron, 2007, 54, 511-533.	8.1	45
27	Conduits of Life's Spark: A Perspective on Ion Channel Research since the Birth of Neuron. Neuron, 2013, 80, 658-674.	8.1	44
28	Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block. PLoS ONE, 2009, 4, e7496.	2.5	42
29	Protein and Chemical Determinants of BL-1249 Action and Selectivity for K _{2P} Channels. ACS Chemical Neuroscience, 2018, 9, 3153-3165.	3.5	40
30	A Selectivity Filter Gate Controls Voltage-Gated Calcium Channel Calcium-Dependent Inactivation. Neuron, 2019, 101, 1134-1149.e3.	8.1	37
31	Stapled Voltage-Gated Calcium Channel (Ca _V) α-Interaction Domain (AID) Peptides Act As Selective Protein–Protein Interaction Inhibitors of Ca _V Function. ACS Chemical Neuroscience, 2017, 8, 1313-1326.	3.5	32
32	Structural Insights into the Mechanisms and Pharmacology of K2P Potassium Channels. Journal of Molecular Biology, 2021, 433, 166995.	4.2	31
33	Polynuclear Ruthenium Amines Inhibit K2P Channels via a "Finger in the Dam―Mechanism. Cell Chemical Biology, 2020, 27, 511-524.e4.	5.2	30
34	Crystal structure of a trimeric form of the K _V 7.1 (KCNQ1) Aâ€domain tail coiledâ€coil reveals structural plasticity and context dependent changes in a putative coiledâ€coil trimerization motif. Protein Science, 2009, 18, 2100-2114.	7.6	26
35	Evidence that toxin resistance in poison birds and frogs is not rooted in sodium channel mutations and may rely on "toxin sponge―proteins. Journal of General Physiology, 2021, 153, .	1.9	26
36	Global versus local mechanisms of temperature sensing in ion channels. Pflugers Archiv European Journal of Physiology, 2018, 470, 733-744.	2.8	23

DANIEL L MINOR JR

#	Article	IF	CITATIONS
37	Structure of the saxiphilin:saxitoxin (STX) complex reveals a convergent molecular recognition strategy for paralytic toxins. Science Advances, 2019, 5, eaax2650.	10.3	22
38	Searching for interesting channels: pairing selection and molecular evolution methods to study ion channel structure and function. Molecular BioSystems, 2009, 5, 802.	2.9	14
39	SARAF Luminal Domain Structure Reveals a Novel Domain-Swapped β-Sandwich Fold Important for SOCE Modulation. Journal of Molecular Biology, 2019, 431, 2869-2883.	4.2	12
40	Structural Basis for Activity and Specificity of an Anticoagulant Anti-FXIa Monoclonal Antibody and a Reversal Agent. Structure, 2018, 26, 187-198.e4.	3.3	8
41	Production of K2P2.1 (TREK-1) for structural studies. Methods in Enzymology, 2021, 653, 151-188.	1.0	7
42	The Polysite Pharmacology of TREK K2P Channels. Advances in Experimental Medicine and Biology, 2021, 1349, 51-65.	1.6	6
43	Channel surfing uncovers a dualâ€use transporter. EMBO Journal, 2017, 36, 3272-3273.	7.8	5
44	Quaternary structure independent folding of voltage-gated ion channel pore domain subunits. Nature Structural and Molecular Biology, 2022, 29, 537-548.	8.2	5
45	Insights into the molecular foundations of electrical excitation. Journal of Molecular Biology, 2015, 427, 1-2.	4.2	4
46	Differential effects of modified batrachotoxins on voltage-gated sodium channel fast and slow inactivation. Cell Chemical Biology, 2022, 29, 615-624.e5.	5.2	4
47	Ion Channels: Intersection of Structure, Function, and Pharmacology. Journal of Molecular Biology, 2021, 433, 167102.	4.2	2
48	Let It Go and Open Up, an Ensemble of Ion Channel Active States. Cell, 2016, 164, 597-598.	28.9	1
49	Inroads into Membrane Physiology through Transport Nanomachines. Journal of Molecular Biology, 2021, 433, 167101.	4.2	1
50	Preface. Methods in Enzymology, 2021, 654, xvii-xviii.	1.0	0
51	Preface. Methods in Enzymology, 2021, 652, xv-xvi.	1.0	О