
Jane Sélia Dos Reis Coimbra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5266575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology, 2012, 5, 1447-1464.	4.7	1,016
2	Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Critical Reviews in Food Science and Nutrition, 2016, 56, 1108-1125.	10.3	417
3	Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 2017, 57, 1618-1630.	10.3	251
4	Nanoemulsions of β-carotene using a high-energy emulsification–evaporation technique. Journal of Food Engineering, 2011, 102, 130-135.	5.2	174
5	Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, 2013, 94, 199-208.	10.2	162
6	Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innovative Food Science and Emerging Technologies, 2018, 48, 179-194.	5.6	154
7	Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food. Comprehensive Reviews in Food Science and Food Safety, 2012, 11, 187-204.	11.7	145
8	Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition, 2021, 61, 1976-2002.	10.3	138
9	Liquid–liquid extraction of metal ions without use of organic solvent. Separation and Purification Technology, 2008, 62, 687-693.	7.9	100
10	Equilibrium Phase Behavior of Poly(ethylene glycol) + Potassium Phosphate + Water Two-Phase Systems at Various pH and Temperatures. Journal of Chemical & Engineering Data, 1997, 42, 398-401.	1.9	88
11	Liquid–Liquid Equilibria of an Aqueous Two-Phase System Containing Poly(ethylene) Glycol 1500 and Sulfate Salts at Different Temperatures. Journal of Chemical & Engineering Data, 2008, 53, 238-241.	1.9	81
12	Equilibrium Data for PEG 4000 + Salt + Water Systems from (278.15 to 318.15) K. Journal of Chemical & Engineering Data, 2007, 52, 351-356.	1.9	66
13	Thermophysical Properties of Cotton, Canola, Sunflower and Soybean Oils as a Function of Temperature. International Journal of Food Properties, 2013, 16, 1620-1629.	3.0	64
14	Solubility and density of egg white proteins: Effect of pH and saline concentration. LWT - Food Science and Technology, 2007, 40, 1304-1307.	5.2	60
15	Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Research International, 2014, 65, 367-374.	6.2	60
16	Density, heat capacity and thermal conductivity of liquid egg products. Journal of Food Engineering, 2006, 74, 186-190.	5.2	59
17	Hydrophobic effect on the partitioning of [Fe(CN)5(NO)]2â^' and [Fe(CN)6]3â^' anions in aqueous two-phase systems formed by triblock copolymers and phosphate salts. Separation and Purification Technology, 2008, 60, 103-112.	7.9	59
18	Continuous separation of whey proteins with aqueous two-phase systems in a Graesser contactor. Journal of Chromatography A, 1994, 668, 85-94.	3.7	56

#	Article	IF	CITATIONS
19	Liquid–Liquid Equilibria of Biphasic Systems Composed of Sodium Citrate + Polyethylene(glycol) 1500 or 4000 at Different Temperatures. Journal of Chemical & Engineering Data, 2008, 53, 895-899.	1.9	53
20	Partitioning of glycomacropeptide in aqueous two-phase systems. Process Biochemistry, 2009, 44, 1213-1216.	3.7	52
21	Nitroprussideâ^'PEO Enthalpic Interaction as a Driving Force for Partitioning of the [Fe(CN)5NO]2-Anion in Aqueous Two-Phase Systems Formed by Poly(ethylene oxide) and Sulfate Salts. Journal of Physical Chemistry B, 2006, 110, 23540-23546.	2.6	51
22	Hydrophobic interaction adsorption of whey proteins: Effect of temperature and salt concentration and thermodynamic analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 844, 6-14.	2.3	49
23	PEOâ^'[M(CN)5NO]x- (M = Fe, Mn, or Cr) Interaction as a Driving Force in the Partitioning of the Pentacyanonitrosylmetallate Anion in ATPS: Strong Effect of the Central Atom. Journal of Physical Chemistry B, 2008, 112, 11669-11678.	2.6	46
24	A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system. Talanta, 2010, 80, 1139-1144.	5.5	46
25	Liquidâ^'Liquid Equilibrium of Aqueous Two-Phase System Composed of Poly(ethylene glycol) 400 and Sulfate Salts. Journal of Chemical & Engineering Data, 2010, 55, 1247-1251.	1.9	45
26	Partitioning of caseinomacropeptide in aqueous two-phase systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 858, 205-210.	2.3	44
27	Rapid detection of whey in milk powder samples by spectrophotometric and multivariate calibration. Food Chemistry, 2015, 174, 1-7.	8.2	43
28	Modeling sterilization process of canned foods using artificial neural networks. Chemical Engineering and Processing: Process Intensification, 2005, 44, 1269-1276.	3.6	42
29	Combined adjustment of pH and ultrasound treatments modify techno-functionalities of pea protein concentrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125156.	4.7	41
30	Liquidâ^'Liquid Equilibria of an Aqueous Two-Phase System Formed by a Triblock Copolymer and Sodium Salts at Different Temperatures. Journal of Chemical & Engineering Data, 2009, 54, 2891-2894.	1.9	39
31	Dispersed Phase Hold-Up in a Perforated Rotating Disc Contactor (PRDC) Using Aqueous Two-Phase Systems Journal of Chemical Engineering of Japan, 1998, 31, 277-280.	0.6	37
32	Equilibrium Phase Behavior of Triblock Copolymer + Salt + Water Two-Phase Systems at Different Temperatures and pH. Journal of Chemical & Engineering Data, 2005, 50, 1457-1461.	1.9	37
33	Effect of pH and salt concentration on the solubility and density of egg yolk and plasma egg yolk. LWT - Food Science and Technology, 2007, 40, 1253-1258.	5.2	36
34	Insights on physicochemical aspects of chitosan dispersion in aqueous solutions of acetic, glycolic, propionic or lactic acid. International Journal of Biological Macromolecules, 2019, 128, 140-148.	7.5	36
35	Hydrophobic interaction adsorption of hen egg white proteins albumin, conalbumin, and lysozyme. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 840, 85-93.	2.3	35
36	Rheology and fluid dynamics properties of sugarcane juice. Biochemical Engineering Journal, 2011, 53, 260-265.	3.6	35

#	Article	IF	CITATIONS
37	Extraction of Pectin from Passion Fruit Peel. Food Engineering Reviews, 2020, 12, 460-472.	5.9	35
38	Influence of Temperature and Water and Fat Contents on the Thermophysical Properties of Milk. Journal of Chemical & Engineering Data, 2002, 47, 1488-1491.	1.9	33
39	Kinetics and Thermodynamics of Oil Extraction from <i>Jatropha curcas</i> L. Using Ethanol as a Solvent. International Journal of Chemical Engineering, 2015, 2015, 1-9.	2.4	33
40	Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats. Journal of Functional Foods, 2020, 65, 103711.	3.4	32
41	Size-exclusion chromatography applied to the purification of whey proteins from the polymeric and saline phases of aqueous two-phase systems. Process Biochemistry, 2004, 39, 1751-1759.	3.7	30
42	Liquidâ^'Liquid Equilibrium of Aqueous Two-Phase Systems Containing Poly(ethylene) Glycol 4000 and Zinc Sulfate at Different Temperatures. Journal of Chemical & Engineering Data, 2008, 53, 919-922.	1.9	30
43	Ovomucoid partitioning in aqueous two-phase systems. Biochemical Engineering Journal, 2009, 47, 55-60.	3.6	30
44	Effects of protein concentration during ultrasonic processing on physicochemical properties and techno-functionality of plant food proteins. Food Hydrocolloids, 2021, 113, 106457.	10.7	30
45	Density, Electrical Conductivity, Kinematic Viscosity, and Refractive Index of Binary Mixtures Containing Poly(ethylene glycol) 4000, Lithium Sulfate, and Water at Different Temperatures. Journal of Chemical & Engineering Data, 2007, 52, 1567-1570.	1.9	28
46	Stability and sensitivity of polydiacetylene vesicles to detect Salmonella. Sensors and Actuators B: Chemical, 2015, 221, 653-658.	7.8	28
47	Equilibrium Phase Behavior for Ternary Mixtures of Poly(ethylene) Glycol 6000 + Water + Sulfate Salts at Different Temperatures. Journal of Chemical & Engineering Data, 2008, 53, 2441-2443.	1.9	27
48	Dispersed phase hold-up in a Graesser raining bucket contactor using aqueous two-phase systems. Journal of Food Engineering, 2006, 72, 302-309.	5.2	25
49	Thermodynamic studies of partitioning behavior of lysozyme and conalbumin in aqueous two-phase systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2579-2584.	2.3	25
50	Production, characterization and foamability of α-lactalbumin/glycomacropeptide supramolecular structures. Food Research International, 2014, 64, 157-165.	6.2	25
51	Hydrogen production and TOC reduction from gasification of lactose by supercritical water. International Journal of Hydrogen Energy, 2015, 40, 12162-12168.	7.1	25
52	Cholesterol removal in liquid egg yolk using high methoxyl pectins. Carbohydrate Polymers, 2007, 69, 72-78.	10.2	23
53	Liquid–Liquid Equilibria of Aqueous Two-Phase Systems Containing Sodium Hydroxide + Poly(ethylene) Tj ETQq2 & Engineering Data, 2012, 57, 280-283.	l 1 0.7843 1.9	814 rgBT /0 23
54	Sistema aquoso bifásico: uma alternativa eficiente para extração de Ãons. Quimica Nova, 2006, 29, 1332-1339.	0.3	22

#	Article	IF	CITATIONS
55	Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	22
56	Rheological Properties of Aqueous Dispersions of Xanthan Gum Containing Different Chloride Salts Are Impacted by both Sizes and Net Electric Charges of the Cations. Food Biophysics, 2018, 13, 186-197.	3.0	22
57	Rheological and Physicochemical Studies on Emulsions Formulated with Chitosan Previously Dispersed in Aqueous Solutions of Lactic Acid. Food Biophysics, 2017, 12, 109-118.	3.0	21
58	Surface Excess Enthalpy of PEO + Salt +Water and L35 + Salt + Water Aqueous Two-Phase Systems. Journal of Chemical & Engineering Data, 2009, 54, 531-535.	1.9	19
59	Liquidâ [~] Liquid Phase Equilibrium of Triblock Copolymer F68, Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock Chemical & Engineering Data, 2010, 55, 1618-1622.	10 Tf 50 5 1.9	87 Td (oxide 19
60	Interfacial Tension of Aqueous Two-Phase Systems Containing Poly(ethylene glycol) and Potassium Phosphate. Journal of Chemical & Engineering Data, 2012, 57, 1648-1652.	1.9	19
61	Partitioning of bovine lactoferrin in aqueous two-phase system containing poly(ethylene glycol) and sodium citrate. Food and Bioproducts Processing, 2015, 95, 118-124.	3.6	19
62	Design of bio-based supramolecular structures through self-assembly of α-lactalbumin and lysozyme. Food Hydrocolloids, 2016, 58, 60-74.	10.7	19
63	Interfacial Tension and Viscosity for Poly(ethylene glycol) + Maltodextrin Aqueous Two-Phase Systems. Journal of Chemical & Engineering Data, 2006, 51, 1144-1147.	1.9	18
64	Equilibrium Data of the Biphasic System Poly(ethylene oxide) 4000 + Copper Sulfate + Water at (5, 10,) Tj ETQq0	0.0 rgBT / 1.9	Overlock 10
65	Adsorption of immunoglobulin Y in supermacroporous continuous cryogel with immobilized Cu2+ ions. Journal of Chromatography A, 2015, 1395, 16-22.	3.7	18
66	Acacia gum as modifier of thermal stability, solubility and emulsifying properties of α-lactalbumin. Carbohydrate Polymers, 2015, 119, 210-218.	10.2	18
67	pH influence on the mechanisms of interaction between chitosan and ovalbumin: a multi-spectroscopic approach. Food Hydrocolloids, 2022, 123, 107137.	10.7	18
68	Measurements and Modeling of Liquid–Liquid Equilibrium of Polyethylene Glycol 400, Sodium Phosphate, or Sodium Citrate Aqueous Two-Phase Systems at (298.2, 308.2, and 318.2) K. Journal of Chemical & Engineering Data, 2013, 58, 2008-2017.	1.9	17
69	Physicochemical Aspects of Chitosan Dispersibility in Acidic Aqueous Media: Effects of the Food Acid Counter-Anion. Food Biophysics, 2016, 11, 388-399.	3.0	17
70	Conjugates of α-lactalbumin, β-lactoglobulin, and lysozyme with polysaccharides: Characterization and techno-functional properties. Food Research International, 2019, 116, 492-498.	6.2	17
71	Modeling Thermal Conductivity, Specific Heat, and Density of Milk: A Neural Network Approach. International Journal of Food Properties, 2004, 7, 531-539.	3.0	16
72	Influence of the temperature and type of salt on the phase equilibrium of peg 1500 + potassium phosphate and peg 1500 + sodium citrate aqueous two-phase systems. Quimica Nova, 2008, 31, 209-213.	0.3	16

#	Article	IF	CITATIONS
73	Leachate treatment using supercritical water. Canadian Journal of Chemical Engineering, 2017, 95, 1442-1448.	1.7	16
74	Chitosan dispersed in aqueous solutions of acetic, glycolic, propionic or lactic acid as a thickener/stabilizer agent of O/W emulsions produced by ultrasonic homogenization. Ultrasonics Sonochemistry, 2019, 59, 104754.	8.2	16
75	Liquidâ^'Liquid Equilibrium for Ternary Systems Containing a Sugar + a Synthetic Polymer + Water. Journal of Chemical & Engineering Data, 2002, 47, 1346-1350.	1.9	15
76	Liquidâ^'Liquid Equilibrium for Systems Composed of Grape Seed Oil + Oleic Acid + Ethanol + Water at (283.2, 290.7, and 298.2) K. Journal of Chemical & Engineering Data, 2008, 53, 1492-1497.	1.9	15
77	Anti-Hypertensive Peptides Derived from Caseins: Mechanism of Physiological Action, Production Bioprocesses, and Challenges for Food Applications. Applied Biochemistry and Biotechnology, 2018, 185, 884-908.	2.9	15
78	Partitioning of glutenin flour of special wheat using aqueous two-phase systems. Journal of Cereal Science, 2010, 52, 270-274.	3.7	14
79	Recovery of casein-derived peptides with in vitro inhibitory activity of angiotensin converting enzyme (ACE) using aqueous two-phase systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 973, 84-88.	2.3	14
80	Recovery, encapsulation and stabilization of bioactives from food residues using high pressure techniques. Current Opinion in Food Science, 2015, 5, 76-85.	8.0	14
81	Formation and characterization of supramolecular structures of β-lactoglobulin and lactoferrin proteins. Food Research International, 2017, 100, 674-681.	6.2	14
82	Continuous fractionation of whey protein isolates by using supercritical carbon dioxide. Journal of CO2 Utilization, 2019, 30, 112-122.	6.8	14
83	Equilibrium Data for Poly(propylene glycol) + Sucrose + Water and Poly(propylene Glycol) + Fructose + Water Systems from (15 to 45) °C. Journal of Chemical & Engineering Data, 2007, 52, 1649-1652.	1.9	13
84	Density, Refractive Index, Apparent Specific Volume, and Electrical Conductivity of Aqueous Solutions of Poly(ethylene glycol) 1500 at Different Temperatures. Journal of Chemical & Engineering Data, 2014, 59, 339-345.	1.9	13
85	Optimized extraction of neutral carbohydrates, crude lipids and photosynthetic pigments from the wet biomass of the microalga Scenedesmus obliquus BR003. Separation and Purification Technology, 2021, 269, 118711.	7.9	13
86	NÃveis de energia metabolizável para codornas japonesas na fase inicial de postura. Revista Brasileira De Zootecnia, 2007, 36, 79-85.	0.8	13
87	Dynamic Viscosity of Binary and Ternary Mixtures Containing Poly(Ethylene Glycol), Potassium Phosphate, and Water. Journal of Chemical & Engineering Data, 2004, 49, 1340-1343.	1.9	12
88	THERMOPHYSICAL PROPERTIES OF JACKFRUIT PULP AFFECTED BY CHANGES IN MOISTURE CONTENT AND TEMPERATURE. Journal of Food Process Engineering, 2011, 34, 580-592.	2.9	12
89	Rheological behavior of Chlorella sp. e Scenedesmus sp. cultures in different biomass concentrations. Engenharia Agricola, 2013, 33, 1063-1071.	0.7	12
90	Characterization, techno-functional properties, and encapsulation efficiency of self-assembled β-lactoglobulin nanostructures. Food Chemistry, 2021, 356, 129719.	8.2	11

#	Article	IF	CITATIONS
91	Scenedesmus obliquus protein concentrate: A sustainable alternative emulsifier for the food industry. Algal Research, 2021, 59, 102468.	4.6	11
92	Partition of α-lactoalbumin and β-lactoglobulin by cloud point extraction. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 867, 189-193.	2.3	10
93	Adsorption of egg yolk plasma cholesterol using a hydrophobic adsorbent. European Food Research and Technology, 2006, 223, 705-709.	3.3	9
94	Equilibrium Data of Aqueous Two-Phase Systems Composed of Poly(ethylene glycol) and Maltodextrin. Journal of Chemical & Engineering Data, 2012, 57, 1984-1990.	1.9	9
95	Green extraction by aqueous two-phase systems of porcine pancreatic and snake venom phospholipase A2. Separation and Purification Technology, 2015, 141, 25-30.	7.9	9
96	Mixed starch/chitosan hydrogels: elastic properties as modelled through simulated annealing algorithm and their ability to strongly reduce yellow sunset (INS 110) release. Carbohydrate Polymers, 2021, 255, 117526.	10.2	9
97	Thermophysical properties of umbu pulp. Brazilian Journal of Food Technology, 2010, 13, 219-225.	0.8	9
98	Nanostructured conjugates from tara gum and α-lactalbumin. Part 1. Structural characterization. International Journal of Biological Macromolecules, 2020, 153, 995-1004.	7.5	8
99	Comparative appraisal of HPLC, Chloramineâ€T and Lane–Eynon methods for quantification of carbohydrates in concentrated dairy products. International Journal of Dairy Technology, 2020, 73, 795-800.	2.8	8
100	THERMAL PROCESS CALCULATION USING ARTIFICIAL NEURAL NETWORKS AND OTHER TRADITIONAL METHODS. Journal of Food Process Engineering, 2006, 29, 162-173.	2.9	7
101	MODELING CONSUMER INTENTION TO PURCHASE FRESH PRODUCE. Journal of Sensory Studies, 2007, 22, 115-125.	1.6	7
102	Xylose reductase activity in Debaryomyces hansenii UFV-170 cultivated in semi-synthetic medium and cotton husk hemicellulose hydrolyzate. Bioprocess and Biosystems Engineering, 2009, 32, 747-754.	3.4	7
103	Solubility of Proteins from Quail (Coturnix coturnix japonica) Egg White as Affected by Agitation Time, pH, and Salt Concentration. International Journal of Food Properties, 2015, 18, 250-258.	3.0	7
104	Casein-Derived Peptides with Antihypertensive Potential: Production, Identification and Assessment of Complex Formation with Angiotensin I-Converting Enzyme (ACE) through Molecular Docking Studies. Food Biophysics, 2020, 15, 162-172.	3.0	7
105	Impacts of Ca2+ cation and temperature on bovine α-lactalbumin secondary structures and foamability – Insights from computational molecular dynamics. Food Chemistry, 2022, 367, 130733.	8.2	7
106	Kinematic Viscosity and Density of Binary and Ternary Mixtures Containing Hydrocolloids, Sodium Chloride, and Water. International Journal of Thermophysics, 2010, 31, 513-524.	2.1	6
107	Pear Drying: Thermodynamics Studies and Coefficients of Convective Heat and Mass Transfer. International Journal of Food Engineering, 2013, 9, 365-374.	1.5	6
108	Thermophysical and rheological properties of dulce de leche with and without coconut flakes as a function of temperature. Food Science and Technology, 2013, 33, 93-98.	1.7	6

#	Article	IF	CITATIONS
109	Physical Properties of Red Guava (<i>Psidium guajava</i> L.) Pulp as Affected by Soluble Solids Content and Temperature. International Journal of Food Engineering, 2014, 10, 437-445.	1.5	6
110	Axial mixing in a Graesser liquid–liquid contactor using aqueous two-phase systems. Chemical Engineering and Processing: Process Intensification, 2005, 44, 441-446.	3.6	5
111	Adsorption kinetics and thermodynamic parameters of egg white proteins. European Food Research and Technology, 2011, 232, 985-993.	3.3	5
112	Friction factors, convective heat transfer coefficients and the Colburn analogy for industrial sugarcane juices. Biochemical Engineering Journal, 2012, 60, 111-118.	3.6	5
113	Rheological Behavior of Binary Aqueous Solutions of Poly(ethylene glycol) of 1500 g·mol ^{–1} as Affected by Temperature and Polymer Concentration. Journal of Chemical & Engineering Data, 2013, 58, 838-844.	1.9	5
114	Supercritical water oxidation of lactose. Canadian Journal of Chemical Engineering, 2017, 95, 827-831.	1.7	5
115	Simulation of ethanol recovery and economic analysis of pectin production on an industrial scale. Bioprocess and Biosystems Engineering, 2021, 44, 1639-1647.	3.4	5
116	Liquid–Liquid Extraction of Neutral Lipids and Free Fatty Acids from Microalgae Oil. Journal of Chemical & Engineering Data, 2018, 63, 3391-3399.	1.9	4
117	Structural and molecular bases of angiotensin-converting enzyme inhibition by bovine casein-derived peptides: an <i>in silico</i> molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, 2021, 39, 1386-1403.	3.5	4
118	Aqueous solutions ofÂglycolic, propionic, or lactic acid in substitution of acetic acid to prepare chitosan dispersions: a study based on rheological and physicochemical properties. Journal of Food Science and Technology, 2021, 58, 1797-1807.	2.8	4
119	Homogenised and pasteurised human milk: lipid profile and effect as a supplement in the enteral diet of Wistar rats. British Journal of Nutrition, 2022, 127, 711-721.	2.3	4
120	Avaliação da influência dos milhos QPM nas caracterÃsticas sensoriais de bolo. Food Science and Technology, 2003, 23, 129-134.	1.7	4
121	Photoacoustic spectroscopy as an approach to assess chemical modifications in edible oils. Journal of the Brazilian Chemical Society, 2013, 24, 369-374.	0.6	4
122	Biochemical and morphological characterization of freshwater microalga Tetradesmus obliquus (Chlorophyta: Chlorophyceae). Protoplasma, 2022, 259, 937-948.	2.1	4
123	Polyelectrolyte complexes (PECs) obtained from chitosan and carboxymethylcellulose: A physicochemical and microstructural study. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100197.	2.6	4
124	SOLUBILITY OF QUAIL (<i>COTURNIX COTURNIX JAPONICA)</i> EGG WHITE PROTEIN. Journal of Food Process Engineering, 2008, 31, 684-693.	2.9	3
125	Modeling Oil Extraction from Green and Roasted Coffee by Means of Supercritical CO2. International Journal of Food Engineering, 2012, 8, .	1.5	3
126	ADSORPTION OF ALPHA-LACTALBUMIN FROM MILK WHEY ON HYDROXYAPATITE: EFFECT OF pH AND TEMPERATURE AND THERMODYNAMIC ANALYSIS. Quimica Nova, 2014, , .	0.3	3

#	Article	IF	CITATIONS
127	Stabilizing Properties of Chia Seed Mucilage on Dispersions and Emulsions at Different pHs. Food Biophysics, 2022, 17, 568-574.	3.0	3
128	Application of a macromolecular micellar system formed by the P123 triblock copolymer for determination of copper concentrations. Open Chemistry, 2010, 8, 258-263.	1.9	2
129	Modeling of the α-lactalbumin and β-lactoglobulin protein separation. Chemical Engineering Research and Design, 2011, 89, 156-163.	5.6	2
	Equilibrium Data for Aqueous Two-Phase Systems Formed by Ionic Liquid (1-Butyl-3-methylimidazolium) Tj ETQqO	0 0 rgBT /	Overlock 10
130	and Inorganic Salts (Dibasic Potassium Phosphate and Tripotassium Phosphate) at 298.15 K. Journal of Chemical & Engineering Data, 2019, 64, 3781-3785.	1.9	2
131	Emulsifying properties of quail egg white proteins in different vegetable oil emulsions. Acta Scientiarum - Technology, 2020, 43, e50067.	0.4	2
132	A REVIEW OF HUMIDIFICATION-DEHUMIDIFICATION DESALINATION SYSTEMS. International Journal of Research -GRANTHAALAYAH, 2020, 8, 290-311.	0.1	2
133	REVISÃO: TÉCNICAS USADAS NO PROCESSO DE PURIFICAÇÃO DE BIOMOLÉCULAS. Boletim Centro De Pesquisa De Processamento De Alimentos, 2003, 21, .	0.2	1
134	AVALIAÇÃ∱O SENSORIAL E MAPA DE PREFERÊNCIA INTERNO DE MARCAS COMERCIAIS DE REFRIGERANTE SABOR GUARANÃ: Boletim Centro De Pesquisa De Processamento De Alimentos, 2003, 21, .	0.2	1
135	Extraction of microalgae oil by organic solvents: experimental determination and modeling of liquid–liquid equilibria using vegetable oils mixture as a model system. Brazilian Journal of Chemical Engineering, 2021, 38, 629-638.	1.3	1
136	Influence of Homogenization in the Physicochemical Quality of Human Milk and Fat Retention in Gastric Tubes. Journal of Human Lactation, 2022, 38, 309-322.	1.6	1
137	PASSION FRUIT BY-PRODUCT: PROCESS DESIGN OF PECTIN PRODUCTION. International Journal of Research -GRANTHAALAYAH, 2020, 8, 58-69.	0.1	1
138	EXTRACTION OF BARU ALMOND OIL USING ALTERNATIVE SOLVENTS TO HEXANE: ETHANOL AND ISOPROPANOL. International Journal of Research -GRANTHAALAYAH, 2020, 8, 356-371.	0.1	1
139	FÉCULA DE BATATA COMO ADJUNTO DE MALTE NA FABRICAÇÃ f O DE CERVEJA. Boletim Centro De Pesquisa De Processamento De Alimentos, 2005, 23, .	0.2	0
140	FATTY ACID PROFILE OF NON-CONFORMING POOLED HUMAN MILK AS AFFECTED BY THE PROCESSING AND STORAGE CONDITIONS. International Journal of Research -GRANTHAALAYAH, 2021, 9, 46-54.	0.1	0
141	Harvesting of Chlorella sorokiniana BR001 cultivated in a low-nitrogen medium using different techniques. Ciencia Rural, 2022, 52, .	0.5	0
142	Separación de ProteÃnas de Suero de Leche LÃquida Por cromatografÃa. Scientia Agropecuaria, 2010, , 21-26.	1.0	0
143	Photoacoustic Spectroscopy as an Approach to Assess Chemical Modifications in Edible Oils. Journal of the Brazilian Chemical Society, 2013, , .	0.6	0
144	Innovative Unit Operations. Contemporary Food Engineering, 2013, , 251-264.	0.2	0

#	Article	IF	CITATIONS
145	PARTITIONING OF WHEY PROTEINS USING AQUEOUS TWO-PHASE SYSTEMS WITH IONIC LIQUIDS. Quimica Nova, 2015, , .	0.3	0
146	Phage PVP-SE1 as Tool Recognition in Polydiacetylene to Produce Intelligent Packaging. Journal of Food Chemistry and Nanotechnology, 2017, 03, .	0.3	0