
Stefan Schulz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5266436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The NPXXY Motif Regulates Î ² -Arrestin Recruitment by the CB1 Cannabinoid Receptor. Cannabis and Cannabinoid Research, 2023, 8, 731-748.	2.9	4
2	GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nature Communications, 2022, 13, 540.	12.8	54
3	Selective phosphorylation of threonine residues defines GPR84–arrestin interactions of biased ligands. Journal of Biological Chemistry, 2022, 298, 101932.	3.4	18
4	Assessment of G Protein-Coupled Oestrogen Receptor Expression in Normal and Neoplastic Human Tissues Using a Novel Rabbit Monoclonal Antibody. International Journal of Molecular Sciences, 2022, 23, 5191.	4.1	6
5	Attenuated G protein signaling and minimal receptor phosphorylation as a biochemical signature of low side-effect opioid analgesics. Scientific Reports, 2022, 12, 7154.	3.3	5
6	Neuropeptide S Encodes Stimulus Salience in the Paraventricular Thalamus. Neuroscience, 2022, 496, 83-95.	2.3	2
7	Comparative evaluation of somatostatin and CXCR4 receptor expression in different types of thyroid carcinoma using well-characterised monoclonal antibodies. BMC Cancer, 2022, 22, .	2.6	2
8	Rapid assessment of G protein signaling of four opioid receptors using a real-time fluorescence-based membrane potential assay. European Journal of Pharmacology, 2021, 890, 173640.	3.5	7
9	Somatostatin. , 2021, , 1-11.		0
10	The microcephaly gene Donson is essential for progenitors of cortical glutamatergic and GABAergic neurons. PLoS Genetics, 2021, 17, e1009441.	3.5	2
11	Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy. Journal of Medicinal Chemistry, 2021, 64, 8104-8126.	6.4	18
12	New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D2 receptor regulation and signaling. Scientific Reports, 2021, 11, 8288.	3.3	19
13	Differential In vitro Pharmacological Profiles of Structurally Diverse Nociceptin Receptor Agonists in Activating G-protein and Beta-arrestin Signaling at the Human Nociceptin Opioid Receptor. Molecular Pharmacology, 2021, 100, MOLPHARM-AR-2020-000076.	2.3	1
14	Gender-Specific Efficacy Revealed by Head-to-Head Comparison of Pasireotide and Octreotide in a Representative In Vivo Model of Nonfunctioning Pituitary Tumors. Cancers, 2021, 13, 3097.	3.7	8
15	SR-17018 Stimulates Atypical µ-Opioid Receptor Phosphorylation and Dephosphorylation. Molecules, 2021, 26, 4509.	3.8	9
16	HA-MOP knockin mice express the canonical µ-opioid receptor but lack detectable splice variants. Communications Biology, 2021, 4, 1070.	4.4	9
17	Pharmacological Characterization of Veldoreotide as a Somatostatin Receptor 4 Agonist. Life, 2021, 11, 1075.	2.4	6
18	Reassessment of SST4 Somatostatin Receptor Expression Using SST4-eGFP Knockin Mice and the Novel Rabbit Monoclonal Anti-Human SST4 Antibody 7H49L61. International Journal of Molecular Sciences, 2021, 22, 12981.	4.1	3

#	Article	IF	CITATIONS
19	Somatostatin. , 2021, , 1456-1466.		0
20	Opioid Systems. , 2021, , 1193-1197.		0
21	Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor. Trends in Pharmacological Sciences, 2020, 41, 947-959.	8.7	91
22	A novel G proteinâ€biased agonist at the μ opioid receptor induces substantial receptor desensitisation through G proteinâ€coupled receptor kinase. British Journal of Pharmacology, 2020, , .	5.4	7
23	Evaluation of Somatostatin and CXCR4 Receptor Expression in a Large Set of Prostate Cancer Samples Using Tissue Microarrays and Well-Characterized Monoclonal Antibodies. Translational Oncology, 2020, 13, 100801.	3.7	7
24	Agonist-induced phosphorylation bar code and differential post-activation signaling of the delta opioid receptor revealed by phosphosite-specific antibodies. Scientific Reports, 2020, 10, 8585.	3.3	29
25	Analgesic treatment with buprenorphine should be adapted to the mouse strain. Pharmacology Biochemistry and Behavior, 2020, 191, 172877.	2.9	14
26	Morphineâ€induced respiratory depression is independent of βâ€arrestin2 signalling. British Journal of Pharmacology, 2020, 177, 2923-2931.	5.4	182
27	Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Science Signaling, 2020, 13, .	3.6	219
28	Comprehensive Assessment of GPR68 Expression in Normal and Neoplastic Human Tissues Using a Novel Rabbit Monoclonal Antibody. International Journal of Molecular Sciences, 2019, 20, 5261.	4.1	12
29	Somatostatin and chemokine CXCR4 receptor expression in pancreatic adenocarcinoma relative to pancreatic neuroendocrine tumours. Journal of Cancer Research and Clinical Oncology, 2019, 145, 2481-2493.	2.5	10
30	Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nature Communications, 2019, 10, 367.	12.8	226
31	The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. Journal of Experimental Medicine, 2019, 216, 1630-1647.	8.5	32
32	Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Science Signaling, 2019, 12, .	3.6	36
33	Different somatostatin and CXCR4 chemokine receptor expression in gastroenteropancreatic neuroendocrine neoplasms depending on their origin. Scientific Reports, 2019, 9, 4339.	3.3	19
34	ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not Î ² -Arrestin. Cell Reports, 2019, 26, 1473-1488.e9.	6.4	60
35	Differential somatostatin, CXCR4 chemokine and endothelin A receptor expression in WHO grade l–IV astrocytic brain tumors. Journal of Cancer Research and Clinical Oncology, 2018, 144, 1227-1237.	2.5	15
36	Targeting multiple opioid receptors – improved analgesics with reduced side effects?. British Journal of Pharmacology, 2018, 175, 2857-2868.	5.4	131

#	Article	IF	CITATIONS
37	International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacological Reviews, 2018, 70, 763-835.	16.0	163
38	Somatostatin and CXCR4 expression patterns in adenocarcinoma and squamous cell carcinoma of the lung relative to small cell lung cancer. Journal of Cancer Research and Clinical Oncology, 2018, 144, 1921-1932.	2.5	15
39	Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Science Signaling, 2018, 11, .	3.6	97
40	Effects of pasireotide (SOM230) on protein turnover and p70S6 kinase-S6 ribosomal protein signaling pathway in rat skeletal muscle cells. Endocrine, 2017, 57, 179-182.	2.3	3
41	Emerging Paradigms of G Protein-Coupled Receptor Dephosphorylation. Trends in Pharmacological Sciences, 2017, 38, 621-636.	8.7	27
42	The effects of kratom on restraint–stress-induced analgesia and its mechanisms of action. Journal of Ethnopharmacology, 2017, 205, 178-185.	4.1	5
43	Neuropeptide S precursor knockout mice display memory and arousal deficits. European Journal of Neuroscience, 2017, 46, 1689-1700.	2.6	23
44	Agonist-Dependent and -Independent κ Opioid Receptor Phosphorylation: Distinct Phosphorylation Patterns and Different Cellular Outcomes. Molecular Pharmacology, 2017, 92, 588-600.	2.3	19
45	Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: tumor capillaries as promising targets. BMC Cancer, 2017, 17, 896.	2.6	26
46	Illness behaviour of general practitioners—a cross-sectional survey. Occupational Medicine, 2017, 67, 33-37.	1.4	13
47	Evaluation of somatostatin, CXCR4 chemokine and endothelin A receptor expression in a large set of paragangliomas. Oncotarget, 2017, 8, 89958-89969.	1.8	25
48	Protein kinase C-mediated mu-opioid receptor phosphorylation and desensitization in rats, and its prevention during early diabetes. Pain, 2016, 157, 910-921.	4.2	23
49	Research Resource: Real-Time Analysis of Somatostatin and Dopamine Receptor Signaling in Pituitary Cells Using a Fluorescence-Based Membrane Potential Assay. Molecular Endocrinology, 2016, 30, 479-490.	3.7	28
50	Differential somatostatin and CXCR4 chemokine receptor expression in MALT-type lymphoma of gastric and extragastric origin. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2239-2247.	2.5	33
51	Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking. Molecular Endocrinology, 2016, 30, 645-659.	3.7	19
52	Determination of sites of U50,488H-promoted phosphorylation of the mouse \hat{I}^{2} opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization. Biochemical Journal, 2016, 473, 497-508.	3.7	23
53	Analysis of Somatostatin Receptor 2A Immunohistochemistry, RT-qPCR, and In Vivo PET/CT Data in Patients With Pancreatic Neuroendocrine Neoplasm. Pancreas, 2015, 44, 648-654.	1.1	12
54	VPAC2 receptor expression in human normal and neoplastic tissues: evaluation of the novel MAB SP235. Endocrine Connections, 2015, 4, 18-26.	1.9	16

#	Article	IF	CITATIONS
55	Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P. Cell Reports, 2015, 10, 1925-1936.	6.4	30
56	Comparison of immunoreactive score, HER2/ <i>neu</i> score and H score for the immunohistochemical evaluation of somatostatin receptors in bronchopulmonary neuroendocrine neoplasms. Histopathology, 2015, 67, 368-377.	2.9	123
57	Role of Phosphorylation Sites in Desensitization of <i>µ</i> -Opioid Receptor. Molecular Pharmacology, 2015, 88, 825-835.	2.3	40
58	Reassessment of endothelin receptor A expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibody UMB-8. Peptides, 2015, 66, 19-25.	2.4	4
59	Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease. Acta Neuropathologica, 2015, 129, 541-563.	7.7	36
60	Somatostatin Receptors in Bronchopulmonary Neuroendocrine Neoplasms: New Diagnostic, Prognostic, and Therapeutic Markers. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 831-840.	3.6	46
61	SSTR3 is a putative target for the medical treatment of gonadotroph adenomas of the pituitary. Endocrine-Related Cancer, 2015, 22, 111-119.	3.1	60
62	Phosphoproteomic analysis of the mouse brain muâ€opioid (MOP) receptor. FEBS Letters, 2015, 589, 2401-2408.	2.8	17
63	Different mechanisms of homologous and heterologous μâ€opioid receptor phosphorylation. British Journal of Pharmacology, 2015, 172, 311-316.	5.4	41
64	Differential expression and prognostic value of the chemokine receptor CXCR4 in bronchopulmonary neuroendocrine neoplasms. Oncotarget, 2015, 6, 3346-3358.	1.8	36
65	Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy. Oncotarget, 2015, 6, 27566-27579.	1.8	77
66	Integrated care: an Information Model for Patient Safety and Vigilance Reporting Systems. Studies in Health Technology and Informatics, 2015, 210, 434-8.	0.3	0
67	Somatostatin Receptors Type 2 and 5 Expression and Localization During Human Pituitary Development. Endocrinology, 2014, 155, 33-39.	2.8	5
68	Heterologous regulation of agonistâ€independent μâ€opioid receptor phosphorylation by protein kinase <scp>C</scp> . British Journal of Pharmacology, 2014, 171, 1330-1340.	5.4	45
69	CXCL14 is no direct modulator of CXCR4. FEBS Letters, 2014, 588, 4769-4775.	2.8	29
70	<scp>PI3Kγ</scp> integrates c <scp>AMP</scp> and <scp>Akt</scp> signalling of the <scp>μ</scp> â€opioid receptor. British Journal of Pharmacology, 2014, 171, 3328-3337.	5.4	19
71	Differential regulation of somatostatin receptor dephosphorylation by β-arrestin1 and β-arrestin2. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 263-269.	3.0	3
72	Fineâ€ŧuning somatostatin receptor signalling by agonistâ€selective phosphorylation and dephosphorylation: IUPHAR Review 5. British Journal of Pharmacology, 2014, 171, 1591-1599.	5.4	12

#	Article	IF	CITATIONS
73	Somatostatin and its 2A Receptor in Dorsal Root Ganglia and Dorsal Horn of Mouse and Human: Expression, Trafficking and Possible Role in Pain. Molecular Pain, 2014, 10, 1744-8069-10-12.	2.1	39
74	Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor. Molecular and Cellular Endocrinology, 2014, 387, 44-51.	3.2	17
75	Loss of Morphine Reward and Dependence in Mice Lacking G Protein–Coupled Receptor Kinase 5. Biological Psychiatry, 2014, 76, 767-774.	1.3	45
76	Does chloride channel accessory 3 have a role in arthritis pain? A study on murine antigen-induced arthritis. Neuroscience Letters, 2014, 576, 40-44.	2.1	5
77	Carboxyl-Terminal Receptor Domains Control the Differential Dephosphorylation of Somatostatin Receptors by Protein Phosphatase 1 Isoforms. PLoS ONE, 2014, 9, e91526.	2.5	12
78	Somatostatin receptor immunohistochemistry in neuroendocrine tumors: comparison between manual and automated evaluation. International Journal of Clinical and Experimental Pathology, 2014, 7, 4971-80.	0.5	7
79	The Concise Guide to PHARMACOLOGY 2013/14: Overview. British Journal of Pharmacology, 2013, 170, 1449-1458.	5.4	153
80	Reevaluation of sst1 somatostatin receptor expression in human normal and neoplastic tissues using the novel rabbit monoclonal antibody UMB-7. Regulatory Peptides, 2013, 183, 1-6.	1.9	24
81	Regulation of <i>µ</i> -Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacological Reviews, 2013, 65, 223-254.	16.0	673
82	Phosphorylation of Threonine 333 Regulates Trafficking of the Human sst5 Somatostatin Receptor. Molecular Endocrinology, 2013, 27, 671-682.	3.7	30
83	Somatostatin receptor subtype 2 (sst2) is a potential prognostic marker and a therapeutic target in medulloblastoma. Child's Nervous System, 2013, 29, 1253-1262.	1.1	12
84	Evaluation of somatostatin receptor subtype expression in human neuroendocrine tumors using two sets of new monoclonal antibodies. Regulatory Peptides, 2013, 187, 35-41.	1.9	19
85	Differentiation of Opioid Drug Effects by Hierarchical Multi-Site Phosphorylation. Molecular Pharmacology, 2013, 83, 633-639.	2.3	113
86	Expression of SSTR2a, but not of SSTRs 1, 3, or 5 in Somatotroph Adenomas Assessed by Monoclonal Antibodies Was Reduced by Octreotide and Correlated With the Acute and Long-Term Effects of Octreotide. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1730-E1739.	3.6	112
87	Preoperative Normalization of Cortisol Levels in Cushing's Disease After Medical Treatment: Consequences for Somatostatin and Dopamine Receptor Subtype Expression and In Vitro Response to Somatostatin Analogs and Dopamine Agonists. Journal of Clinical Endocrinology and Metabolism, 2013. 98. E1880-E1890.	3.6	44
88	Hierarchical Organization of Multi-Site Phosphorylation at the CXCR4 C Terminus. PLoS ONE, 2013, 8, e64975.	2.5	52
89	Correlation of monoclonal and polyclonal somatostatin receptor 5 antibodies in pancreatic neuroendocrine tumors. International Journal of Clinical and Experimental Pathology, 2013, 6, 49-54.	0.5	8
90	Differential Expression of Somatostatin Receptor Subtype 1–5 Proteins in Numerous Human Normal Tissues. Experimental and Clinical Endocrinology and Diabetes, 2012, 120, 482-489.	1.2	43

#	Article	IF	CITATIONS
91	A Switch of G Protein-Coupled Receptor Binding Preference from Phosphoinositide 3-Kinase (PI3K)–p85 to Filamin A Negatively Controls the PI3K Pathway. Molecular and Cellular Biology, 2012, 32, 1004-1016.	2.3	32
92	Rapid Uptake and Degradation of CXCL12 Depend on CXCR7 Carboxyl-terminal Serine/Threonine Residues. Journal of Biological Chemistry, 2012, 287, 28362-28377.	3.4	79
93	Reassessment of sst ₃ Somatostatin Receptor Expression in Human Normal and Neoplastic Tissues Using the Novel Rabbit Monoclonal Antibody UMB-5. Neuroendocrinology, 2012, 96, 301-310.	2.5	44
94	DG3173 (somatoprim), a unique somatostatin receptor subtypes 2-, 4- and 5-selective analogue, effectively reduces GH secretion in human GH-secreting pituitary adenomas even in Octreotide non-responsive tumours. European Journal of Endocrinology, 2012, 166, 223-234.	3.7	55
95	Diagnosis of chronic disseminated candidosis from liver biopsies by a novel PCR in patients with haematological malignancies. Clinical Microbiology and Infection, 2012, 18, 1010-1016.	6.0	15
96	Deciphering µâ€opioid receptor phosphorylation and dephosphorylation in HEK293 cells. British Journal of Pharmacology, 2012, 167, 1259-1270.	5.4	85
97	Comprehensive evaluation of a somatostatin-based radiolabelled antagonist for diagnostic imaging and radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 1876-1885.	6.4	43
98	A Transplantable Phosphorylation Probe for Direct Assessment of G Protein-Coupled Receptor Activation. PLoS ONE, 2012, 7, e39458.	2.5	11
99	CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney. PLoS ONE, 2012, 7, e42814.	2.5	40
100	Somatostatin Analogs Modulate AIP in Somatotroph Adenomas: The Role of the ZAC1 Pathway. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1411-E1420.	3.6	122
101	Balance between somatostatin and D2 receptor expression drives TSHâ€secreting adenoma response to somatostatin analogues and dopastatins. Clinical Endocrinology, 2012, 76, 407-414.	2.4	47
102	Expression of the proliferation marker <scp>K</scp> iâ€67 associates with tumour staging and clinical outcome in differentiated thyroid carcinomas. Clinical Endocrinology, 2012, 77, 139-145.	2.4	22
103	High KIT and PDGFRA are associated with shorter patients survival in gastroenteropancreatic neuroendocrine tumors, but mutations are a rare event. Journal of Cancer Research and Clinical Oncology, 2012, 138, 397-403.	2.5	23
104	Comparing of IRS and Her2 as immunohistochemical scoring schemes in gastroenteropancreatic neuroendocrine tumors. International Journal of Clinical and Experimental Pathology, 2012, 5, 187-94.	0.5	73
105	Phenotypic and Genotypic Characterization of Carcinomas of the Papilla of Vater Has Prognostic and Putative Therapeutic Implications. American Journal of Clinical Pathology, 2011, 135, 202-211.	0.7	44
106	Analgesic Tolerance to High-Efficacy Agonists But Not to Morphine Is Diminished in Phosphorylation-Deficient S375A μ-Opioid Receptor Knock-In Mice. Journal of Neuroscience, 2011, 31, 13890-13896.	3.6	55
107	Potent anti-inflammatory and antinociceptive activity of the endothelin receptor antagonist bosentan in monoarthritic mice. Arthritis Research and Therapy, 2011, 13, R97.	3.5	31
108	Cxcr7 Controls Neuronal Migration by Regulating Chemokine Responsiveness. Neuron, 2011, 69, 77-90.	8.1	260

#	Article	IF	CITATIONS
109	Agonist-selective patterns of µ-opioid receptor phosphorylation revealed by phosphosite-specific antibodies. British Journal of Pharmacology, 2011, 164, 298-307.	5.4	118
110	UMB-3, a novel rabbit monoclonal antibody, for assessing μ-opioid receptor expression in mouse, rat and human formalin-fixed and paraffin-embedded tissues. Regulatory Peptides, 2011, 167, 9-13.	1.9	28
111	Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1659-1668.	6.4	130
112	Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. Journal of Comparative Neurology, 2011, 519, 1867-1893.	1.6	112
113	Differential antiinflammatory and antinociceptive effects of the somatostatin analogs octreotide and pasireotide in a mouse model of immuneâ€mediated arthritis. Arthritis and Rheumatism, 2011, 63, 2352-2362.	6.7	43
114	Structural Determinants of Agonist-Selective Signaling at the sst2A Somatostatin Receptor. Molecular Endocrinology, 2011, 25, 859-866.	3.7	27
115	Rapid Dephosphorylation of G Protein-coupled Receptors by Protein Phosphatase 1β Is Required for Termination of β-Arrestin-dependent Signaling. Journal of Biological Chemistry, 2011, 286, 32931-32936.	3.4	34
116	Reassessment of sst ₅ Somatostatin Receptor Expression in Normal and Neoplastic Human Tissues Using the Novel Rabbit Monoclonal Antibody UMB-4. Neuroendocrinology, 2011, 94, 255-264.	2.5	65
117	Regulation of Spinal Dynorphin 1-17 Release by Endogenous Pituitary Adenylyl Cyclase-Activating Polypeptide in the Male Rat: Relevance of Excitation via Disinhibition. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 328-335.	2.5	16
118	PET of CXCR4 Expression by a ⁶⁸ Ga-Labeled Highly Specific Targeted Contrast Agent. Journal of Nuclear Medicine, 2011, 52, 1803-1810.	5.0	182
119	Somatostatin Signaling in Neuronal Cilia Is Criticalfor Object Recognition Memory. Journal of Neuroscience, 2010, 30, 4306-4314.	3.6	115
120	Agonist-regulated Cleavage of the Extracellular Domain of Parathyroid Hormone Receptor Type 1. Journal of Biological Chemistry, 2010, 285, 8665-8674.	3.4	16
121	Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. European Journal of Endocrinology, 2010, 162, 979-986.	3.7	65
122	Association of Somatostatin Receptor 2 Immunohistochemical Expression with [¹¹¹ In]-DTPA Octreotide Scintigraphy and [⁶⁸ Ga]-DOTATOC PET/CT in Neuroendocrine Tumors. Hormone and Metabolic Research, 2010, 42, 599-606.	1.5	25
123	Pasireotide and Octreotide Stimulate Distinct Patterns of sst2A Somatostatin Receptor Phosphorylation. Molecular Endocrinology, 2010, 24, 436-446.	3.7	83
124	Real-Time Monitoring of Somatostatin Receptor-cAMP Signaling in Live Pituitary. Endocrinology, 2010, 151, 4560-4565.	2.8	14
125	The Conserved Bardet-Biedl Syndrome Proteins Assemble a Coat that Traffics Membrane Proteins to Cilia. Cell, 2010, 141, 1208-1219.	28.9	542
126	Modulation of μ-opioid receptor desensitization in peripheral sensory neurons by phosphoinositide 3-kinase γ. Neuroscience, 2010, 169, 449-454.	2.3	28

#	Article	IF	CITATIONS
127	Vascular CXCR4 Expression – a Novel Antiangiogenic Target in Gastric Cancer?. PLoS ONE, 2010, 5, e10087.	2.5	28
128	Alterations of Phospholamban Function Can Exhibit Cardiotoxic Effects Independent of Excessive Sarcoplasmic Reticulum Ca ²⁺ -ATPase Inhibition. Circulation, 2009, 119, 436-444.	1.6	43
129	Differential Effects of Octreotide and Pasireotide on Somatostatin Receptor Internalization and Trafficking in Vitro. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 654-661.	3.6	156
130	Identification and Characterization of Two Novel Truncated but Functional Isoforms of the Somatostatin Receptor Subtype 5 Differentially Present in Pituitary Tumors. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2634-2643.	3.6	125
131	Interaction of the human somatostatin receptor 3 with the multiple PDZ domain protein MUPP1 enables somatostatin to control permeability of epithelial tight junctions. FEBS Letters, 2009, 583, 49-54.	2.8	31
132	The role of vascular CXCR4 expression in colorectal carcinoma. Histopathology, 2009, 55, 576-586.	2.9	19
133	Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the μ-opioid receptor. Neuropharmacology, 2009, 56, 768-778.	4.1	53
134	Regional and cellular localization of the CXCl12/SDFâ€1 chemokine receptor CXCR7 in the developing and adult rat brain. Journal of Comparative Neurology, 2008, 510, 207-220.	1.6	118
135	Immunohistochemical localization of somatostatin receptor subtypes in benign and malignant adrenal tumours. Clinical Endocrinology, 2008, 68, 850-857.	2.4	46
136	Enhanced expression of the CXCl12/SDF-1 chemokine receptor CXCR7 after cerebral ischemia in the rat brain. Journal of Neuroimmunology, 2008, 198, 39-45.	2.3	94
137	Somatostatin receptor subtype 1 is a PDZ ligand for synapse-associated protein 97 and a potential regulator of growth cone dynamics. Neuroscience, 2008, 157, 833-843.	2.3	13
138	Intracellular trafficking of somatostatin receptors. Molecular and Cellular Endocrinology, 2008, 286, 58-62.	3.2	46
139	Reassessment of sst ₂ Somatostatin Receptor Expression in Human Normal and Neoplastic Tissues Using the Novel Rabbit Monoclonal Antibody UMB-1. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4519-4524.	3.6	114
140	Indium-111–Pentetreotide Scintigraphy and Somatostatin Receptor Subtype 2 Expression: New Prognostic Factors for Malignant Well-Differentiated Endocrine Tumors. Journal of Clinical Oncology, 2008, 26, 963-970.	1.6	99
141	Tonic Activation of CXC Chemokine Receptor 4 in Immature Granule Cells Supports Neurogenesis in the Adult Dentate Gyrus. Journal of Neuroscience, 2008, 28, 4488-4500.	3.6	71
142	New Pansomatostatin Ligands and Their Chelated Versions: Affinity Profile, Agonist Activity, Internalization, and Tumor Targeting. Clinical Cancer Research, 2008, 14, 2019-2027.	7.0	68
143	Selective Loss of Somatostatin Receptor 2 in Octreotide-Resistant Growth Hormone-Secreting Adenomas. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1203-1210.	3.6	98
144	Reassessment of CXCR4 Chemokine Receptor Expression in Human Normal and Neoplastic Tissues Using the Novel Rabbit Monoclonal Antibody UMB-2. PLoS ONE, 2008, 3, e4069.	2.5	59

#	Article	IF	CITATIONS
145	Membrane Glycoprotein M6a Interacts with the μ-Opioid Receptor and Facilitates Receptor Endocytosis and Recycling. Journal of Biological Chemistry, 2007, 282, 22239-22247.	3.4	52
146	Novel insights in somatostatin receptor physiology. European Journal of Endocrinology, 2007, 156, S3-S11.	3.7	64
147	Immunofluorescent identification of neuropeptide B-containing nerve fibers and terminals in the rat hypothalamus. Neuroscience Letters, 2007, 411, 67-71.	2.1	16
148	Interaction of brain somatostatin receptors with the PDZ domains of PSDâ€95. FEBS Letters, 2007, 581, 5173-5177.	2.8	17
149	Patterns of SDF-1α and SDF-1Î ³ mRNAs, migration pathways, and phenotypes of CXCR4-expressing neurons in the developing rat telencephalon. Journal of Comparative Neurology, 2007, 502, 382-399.	1.6	86
150	Somatostatin analogues, a series of tissue transglutaminase inducers, as a new tool for therapy of mesenchimal tumors of the gastrointestinal tract. Amino Acids, 2007, 32, 395-400.	2.7	9
151	Immunocytochemical localisation of plasma membrane GHRH receptors in human tumours using a novel anti-peptide antibody. European Journal of Cancer, 2006, 42, 2390-2396.	2.8	19
152	Design, Synthesis, and Biological Evaluation of Somatostatin-Based Radiopeptides. Chemistry and Biology, 2006, 13, 1081-1090.	6.0	38
153	Immunohistochemical detection of bombesin receptor subtypes GRP-R and BRS-3 in human tumors using novel antipeptide antibodies. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2006, 449, 421-427.	2.8	25
154	Biomedical ontologies: What part-of is and isn't. Journal of Biomedical Informatics, 2006, 39, 350-361.	4.3	41
155	Immunocytochemical identification of low-affinity NTS2 neurotensin receptors in parietal cells of human gastric mucosa. Journal of Endocrinology, 2006, 191, 121-128.	2.6	9
156	Immunolocalization of Full-length NK1 Tachykinin Receptors in Human Tumors. Journal of Histochemistry and Cytochemistry, 2006, 54, 1015-1020.	2.5	26
157	Pain control by CXCR2 ligands through Ca 2+ â€regulated release of opioid peptides from polymorphonuclear cells. FASEB Journal, 2006, 20, 2627-2629.	0.5	110
158	Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. Journal of Nuclear Medicine, 2006, 47, 502-11.	5.0	132
159	The semantics of procedures and diseases in SNOMED CT. Methods of Information in Medicine, 2006, 45, 354-8.	1.2	15
160	Expression and Function of Somatostatin Receptors in Peripheral Nerve Sheath Tumors. Journal of Neuropathology and Experimental Neurology, 2005, 64, 1080-1088.	1.7	23
161	Mechanisms of somatostatin-evoked responses in neurons of the rat lateral amygdala. European Journal of Neuroscience, 2005, 21, 755-762.	2.6	29
162	Delta-opioid receptor-immunoreactive neurons in the rat cranial sensory ganglia. Brain Research, 2005, 1043, 225-230.	2.2	15

#	Article	IF	CITATIONS
163	Receptor Endocytosis Counteracts the Development of Opioid Tolerance. Molecular Pharmacology, 2005, 67, 280-287.	2.3	153
164	Immunohistochemical Localization of CCK1Cholecystokinin Receptors in Normal and Neoplastic Human Tissues. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 6149-6155.	3.6	10
165	CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes and Development, 2005, 19, 2187-2198.	5.9	164
166	Expression of the mu-opioid receptor is induced in dentate gyrus granule cells after focal cerebrocortical ischaemia and stimulation of entorhinal afferents. European Journal of Neuroscience, 2005, 22, 1032-1044.	2.6	7
167	Effect of Brn-3a deficiency on primary nociceptors in the trigeminal ganglion. Neuroscience Research, 2005, 51, 445-451.	1.9	10
168	Trifunctional somatostatin-based derivatives designed for targeted radiotherapy using auger electron emitters. Journal of Nuclear Medicine, 2005, 46, 2097-103.	5.0	40
169	Immunohistochemical Determination of Somatostatin Receptor Subtypes 1, 2A, 3, 4, and 5 in Various Adrenal Tumors. Endocrine Research, 2004, 30, 931-934.	1.2	26
170	Immunocytochemical Identification of VPAC1, VPAC2, and PAC1 Receptors in Normal and Neoplastic Human Tissues with Subtype-Specific Antibodies. Clinical Cancer Research, 2004, 10, 8235-8242.	7.0	90
171	Differential β-Arrestin Trafficking and Endosomal Sorting of Somatostatin Receptor Subtypes. Journal of Biological Chemistry, 2004, 279, 21374-21382.	3.4	150
172	Somatostatin Receptor 2 Is Activated in Cortical Neurons and Contributes to Neurodegeneration after Focal Ischemia. Journal of Neuroscience, 2004, 24, 11404-11415.	3.6	51
173	Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. Journal of Neurochemistry, 2004, 89, 553-560.	3.9	263
174	Morphine induces terminal $\hat{l}_{1/4}$ -opioid receptor desensitization by sustained phosphorylation of serine-375. EMBO Journal, 2004, 23, 3282-3289.	7.8	165
175	Neuronal types expressing μ- and δ-opioid receptor mRNA in the rat hippocampal formation. Journal of Comparative Neurology, 2004, 469, 107-118.	1.6	91
176	Differential Expression of sst ₁ , sst _{2A} , and sst ₃ Somatostatin Receptor Proteins in Low-Grade and High-Grade Astrocytomas. Journal of Neuropathology and Experimental Neurology, 2004, 63, 13-19.	1.7	30
177	Frequent expression of immunoreactive somatostatin receptors in cervical and endometrial cancer. Gynecologic Oncology, 2003, 89, 385-390.	1.4	22
178	Leptin-Target Neurones of the Rat Hypothalamus Express Somatostatin Receptors. Journal of Neuroendocrinology, 2003, 15, 822-830.	2.6	30
179	Phospholipase D2 modulates agonist-induced µ-opioid receptor desensitization and resensitization. Journal of Neurochemistry, 2003, 88, 680-688.	3.9	64
180	The somatostatin SST2A receptor in the rat trigeminal ganglion. Neuroscience, 2003, 120, 807-813.	2.3	17

#	Article	IF	CITATIONS
181	Subword-based text retrieval. , 2003, , .		2
182	Heterodimerization of Substance P and μ-Opioid Receptors Regulates Receptor Trafficking and Resensitization. Journal of Biological Chemistry, 2003, 278, 51630-51637.	3.4	132
183	Inhibitory Role of the Somatostatin Receptor SST2 on the Intracrine-regulated Cell Proliferation Induced by the 210-Amino Acid Fibroblast Growth Factor-2 Isoform. Journal of Biological Chemistry, 2003, 278, 20574-20581.	3.4	27
184	ADP-ribosylation Factor-dependent Phospholipase D2 Activation Is Required for Agonist-induced μ-Opioid Receptor Endocytosis. Journal of Biological Chemistry, 2003, 278, 9979-9985.	3.4	91
185	Somatostatin Receptor Subtypes in Human Pheochromocytoma: Subcellular Expression Pattern and Functional Relevance for Octreotide Scintigraphy. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5150-5157.	3.6	137
186	CXCR4 Regulates Interneuron Migration in the Developing Neocortex. Journal of Neuroscience, 2003, 23, 5123-5130.	3.6	411
187	Heterodimerization of Somatostatin and Opioid Receptors Cross-modulates Phosphorylation, Internalization, and Desensitization. Journal of Biological Chemistry, 2002, 277, 19762-19772.	3.4	227
188	Identification of somatostatin receptor subtypes 1, 2A, 3, and 5 in neuroendocrine tumours with subtype specific antibodies. Gut, 2002, 50, 52-60.	12.1	186
189	Somatostatin mediates nitric oxide production by activating sst2 receptors in the rat retina. Neuropharmacology, 2002, 43, 899-909.	4.1	41
190	A Dual Role for the SDF-1/CXCR4 Chemokine Receptor System in Adult Brain: Isoform-Selective Regulation of SDF-1 Expression Modulates CXCR4-Dependent Neuronal Plasticity and Cerebral Leukocyte Recruitment after Focal Ischemia. Journal of Neuroscience, 2002, 22, 5865-5878.	3.6	366
191	Expression changes of somatostatin receptor subtypes sst2A, sst2B, sst3 and sst4 after a cortical contusion trauma in rats. Brain Research, 2002, 930, 191-199.	2.2	6
192	Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract ofSstr2 knockout/lacZ knockin mice. Journal of Comparative Neurology, 2002, 454, 329-340.	1.6	60
193	Induction of Proenkephalin Gene Expression in Cultured Bovine Chromaffin Cells Is Dependent on Protein Synthesis of AP-1 Proteins. Journal of Neurochemistry, 2002, 66, 2264-2271.	3.9	17
194	Immunohistochemical Detection of Somatostatin Receptors in Human Ovarian Tumors. Gynecologic Oncology, 2002, 84, 235-240.	1.4	28
195	Loss of locomotor sensitisation in response to morphine in D1 receptor deficient mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 562-568.	3.0	35
196	Involvement of Mitogen-Activated Protein Kinase in Agonist-Induced Phosphorylation of the μ-Opioid Receptor in HEK 293 Cells. Journal of Neurochemistry, 2001, 74, 414-422.	3.9	87
197	C-terminal Splice Variants of the Mouse µ-Opioid Receptor Differ in Morphine-induced Internalization and Receptor Resensitization. Journal of Biological Chemistry, 2001, 276, 31408-31414.	3.4	150
198	Homo- and Heterodimerization of Somatostatin Receptor Subtypes. Journal of Biological Chemistry, 2001, 276, 14027-14036.	3.4	274

#	Article	IF	CITATIONS
199	Bidirectional mereological reasoning in anatomical knowledge bases. Proceedings, 2001, , 607-11.	0.6	9
200	Hormonal regulation of neonatal weight: placental leptin and leptin receptors. BJOG: an International Journal of Obstetrics and Gynaecology, 2000, 107, 1486-1491.	2.3	26
201	Localization of five somatostatin receptors in the rat central nervous system using subtype-specific antibodies. Journal of Physiology (Paris), 2000, 94, 259-264.	2.1	137
202	Distribution, Targeting, and Internalization of the sst ₄ Somatostatin Receptor in Rat Brain. Journal of Neuroscience, 2000, 20, 3785-3797.	3.6	98
203	Colocalization of the μ-opioid receptor and calcium/calmodulin-dependent kinase II in distinct pain-processing brain regions. Molecular Brain Research, 2000, 85, 239-250.	2.3	81
204	Knowledge engineering the UMLS. Studies in Health Technology and Informatics, 2000, 77, 701-5.	0.3	3
205	Replacement of Threonine 394 by Alanine Facilitates Internalization and Resensitization of the Rat μ Opioid Receptor. Molecular Pharmacology, 1999, 55, 263-268.	2.3	58
206	Direct Evidence for Biphasic cAMP Responsive Element-Binding Protein Phosphorylation during Long-Term Potentiation in the Rat Dentate GyrusIn Vivo. Journal of Neuroscience, 1999, 19, 5683-5692.	3.6	142
207	Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10444-10449.	7.1	235
208	Tyramide signal amplification in brain immunocytochemistry: adaptation to electron microscopy. Journal of Neuroscience Methods, 1999, 88, 55-61.	2.5	12
209	Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience, 1999, 89, 909-926.	2.3	344
210	Protective effects of cortistatin (CST-14) against kainate-induced neurotoxicity in rat brain. Brain Research, 1998, 803, 54-60.	2.2	35
211	Opioid withdrawal activates MAP kinase in locus coeruleus neurons in morphine-dependent ratsin vivo. European Journal of Neuroscience, 1998, 10, 1196-1201.	2.6	78
212	Immunocytochemical localization of somatostatin receptor sst2Ain the rat spinal cord and dorsal root ganglia. European Journal of Neuroscience, 1998, 10, 3700-3708.	2.6	104
213	Differential distribution of alternatively spliced somatostatin receptor 2 isoforms (sst2A and sst2B) in rat spinal cord. Neuroscience Letters, 1998, 257, 37-40.	2.1	41
214	Carboxyl-terminal Splicing of the Rat μ Opioid Receptor Modulates Agonist-mediated Internalization and Receptor Resensitization. Journal of Biological Chemistry, 1998, 273, 13652-13657.	3.4	172
215	Immunofluorescent identification of endomorphin-2-containing nerve fibers and terminals in the rat brain and spinal cord. NeuroReport, 1998, 9, 1031-1034.	1.2	80
216	Conversion problems concerning automated mapping from ICD-10 to ICD-9. Methods of Information in Medicine, 1998, 37, 254-9.	1.2	5

#	Article	IF	CITATIONS
217	Perillic Acid Inhibits Ras/MAPkinase-Driven IL-2 Production in Human T Lymphocytes. Biochemical and Biophysical Research Communications, 1997, 241, 720-725.	2.1	26
218	Immunocytochemistry of endothelial nitric oxide synthase in the rat brain: a light and electron microscopical study using the tyramide signal amplification technique. Acta Histochemica, 1997, 99, 411-429.	1.8	76
219	Inhibition by compactin demonstrates a requirement of isoprenoid metabolism for long-term potentiation in rat hippocampal slices. Neuroscience, 1997, 79, 341-346.	2.3	30
220	Immunolocalization of two mu-opioid receptor isoforms (MOR1 and MOR1B) in the rat central nervous system. Neuroscience, 1997, 82, 613-622.	2.3	71
221	Design of a multiple slice interface chamber and application for resolving the temporal pattern of CREB phosphorylation in hippocampal long-term potentiation. Journal of Neuroscience Methods, 1997, 78, 173-179.	2.5	31
222	Computer-based training and electronic publishing in the health sector: tools and trends. Methods of Information in Medicine, 1997, 36, 149-53.	1.2	1
223	Nociceptin/orphanin FQ and opioid peptides show overlapping distribution but not co-localization in pain-modulatory brain regions. NeuroReport, 1996, 7, 3021-3026.	1.2	129
224	Inhibition of protein farnesyltransferase: a possible mechanism of tumor prevention by dehydroepiandros terone sulfate. Carcinogenesis, 1995, 16, 149-149.	2.8	0
225	Inhibition of protein farnesyltransferase: a possible mechanism of tumor prevention by dehydroepiandrosterone sulfate. Carcinogenesis, 1994, 15, 2649-2652.	2.8	11
226	Prenylated proteins and lymphocyte proliferation: Inhibition byd-limonene and related monoterpenes. European Journal of Immunology, 1994, 24, 301-307.	2.9	49
227	Detection of inhibition of HIV-1 protease activity by an enzyme-linked immunosorbent assay (ELISA). Journal of Immunological Methods, 1993, 161, 151-155.	1.4	6
228	Epigenetic mechanisms of drug resistance: drug-induced DNA hypermethylation and drug resistance Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2960-2964.	7.1	90
229	Mechanisms of cell growth inhibition and cell cycle arrest in human colonic adenocarcinoma cells by dehydroepiandrosterone: role of isoprenoid biosynthesis. Cancer Research, 1992, 52, 1372-6.	0.9	42
230	Inhibition of protein isoprenylation and p21ras membrane association by dehydroepiandrosterone in human colonic adenocarcinoma cells in vitro. Cancer Research, 1991, 51, 6563-7.	0.9	43