List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/526499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene expression changes related to bone mineralization, blood pressure and lipid metabolism in mouse kidneys after space travel. Kidney International, 2022, 101, 92-105.	5.2	11
2	Esterification promotes the intracellular accumulation of roxadustat, an activator of hypoxia-inducible factors, to extend its effective duration. Biochemical Pharmacology, 2022, 197, 114939.	4.4	3
3	Prolyl Hydroxylase Domain Protein Inhibitor Not Harboring a 2-Oxoglutarate Scaffold Protects against Hypoxic Stress. ACS Pharmacology and Translational Science, 2022, 5, 362-372.	4.9	2
4	Nrf2 activation for kidney disease treatment—a mixed blessing?. Kidney International, 2021, 99, 20-22.	5.2	4
5	Renal interstitial fibroblasts coproduce erythropoietin and renin under anaemic conditions. EBioMedicine, 2021, 64, 103209.	6.1	19
6	Defining the functionally sufficient regulatory region and liver-specific roles of the erythropoietin gene by transgene complementation. Life Sciences, 2021, 269, 119075.	4.3	4
7	Renal NG2-expressing cells have a macrophage-like phenotype and facilitate renal recovery after ischemic injury. American Journal of Physiology - Renal Physiology, 2021, 321, F170-F178.	2.7	6
8	Distinct Regulations of <i>HO-1</i> Gene Expression for Stress Response and Substrate Induction. Molecular and Cellular Biology, 2021, 41, e0023621.	2.3	12
9	Efficient isolation of interstitial fibroblasts directly from mouse kidneys or indirectly after ex vivo expansion. STAR Protocols, 2021, 2, 100826.	1.2	6
10	Nrf2 plays a critical role in the metabolic response during and after spaceflight. Communications Biology, 2021, 4, 1381.	4.4	10
11	Effects of post-renal anemia treatment with the HIF-PHD inhibitor molidustat on adenine-induced renal anemia and kidney disease in mice. Journal of Pharmacological Sciences, 2020, 144, 229-236.	2.5	14
12	Nrf2 contributes to the weight gain of mice during space travel. Communications Biology, 2020, 3, 496.	4.4	27
13	Roles of Nrf2 in Protecting the Kidney from Oxidative Damage. International Journal of Molecular Sciences, 2020, 21, 2951.	4.1	93
14	An immortalized cell line derived from renal erythropoietin-producing (REP) cells demonstrates their potential to transform into myofibroblasts. Scientific Reports, 2019, 9, 11254.	3.3	23
15	The Neural Crest as the First Production Site of the Erythroid Growth Factor Erythropoietin. Frontiers in Cell and Developmental Biology, 2019, 7, 105.	3.7	13
16	Alteration of the DNA Methylation Signature of Renal Erythropoietin-Producing Cells Governs the Sensitivity to Drugs Targeting the Hypoxia-Response Pathway in Kidney Disease Progression. Frontiers in Genetics, 2019, 10, 1134.	2.3	13
17	HIF-dependent and reversible nucleosome disassembly in hypoxia-inducible gene promoters. Experimental Cell Research, 2018, 366, 181-191.	2.6	17
18	Iron attenuates erythropoietin production by decreasing hypoxia-inducible transcription factor 21± concentrations in renal interstitial fibroblasts. Kidney International, 2018, 94, 900-911.	5.2	26

#	Article	IF	CITATIONS
19	Detection of novel metabolite for roxadustat doping by global metabolomics. Journal of Biochemistry, 2018, 163, e1-e1.	1.7	2
20	Palmitate deranges erythropoietin production via transcription factor ATF4 activation of unfolded protein response. Kidney International, 2018, 94, 536-550.	5.2	30
21	Renal Anemia Model Mouse Established by Transgenic Rescue with an Erythropoietin Gene Lacking Kidney-Specific Regulatory Elements. Molecular and Cellular Biology, 2017, 37, .	2.3	20
22	Nrf2 inactivation enhances placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes. Science Signaling, 2017, 10, .	3.6	68
23	Regulation of hypoxia-inducible gene expression after HIF activation. Experimental Cell Research, 2017, 356, 182-186.	2.6	49
24	Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression. American Journal of Nephrology, 2017, 45, 473-483.	3.1	2,487
25	Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney International, 2017, 91, 387-401.	5.2	154
26	Efficacy estimation of erythropoiesis-stimulating agents using erythropoietin-deficient anemic mice. Haematologica, 2016, 101, e356-e360.	3.5	11
27	The Mediator Subunit MED16 Transduces NRF2-Activating Signals into Antioxidant Gene Expression. Molecular and Cellular Biology, 2016, 36, 407-420.	2.3	64
28	Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis. Pflugers Archiv European Journal of Physiology, 2016, 468, 3-12.	2.8	54
29	Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling. Journal of the American Society of Nephrology: JASN, 2016, 27, 428-438.	6.1	137
30	Erythropoietin Gene Expression: Developmental-Stage Specificity, Cell-Type Specificity, and Hypoxia Inducibility. Tohoku Journal of Experimental Medicine, 2015, 235, 233-240.	1.2	30
31	Renal erythropoietin-producing cells in health and disease. Frontiers in Physiology, 2015, 6, 167.	2.8	96
32	Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes. Molecular and Cellular Biology, 2015, 35, 2658-2672.	2.3	54
33	In Vivo Regulation of Erythropoiesis by Chemically Inducible Dimerization of the Erythropoietin Receptor Intracellular Domain. PLoS ONE, 2015, 10, e0119442.	2.5	11
34	Erythropoietin contributes to slow oxidative muscle fiber specification via PGC-1 \hat{l} ± and AMPK activation. International Journal of Biochemistry and Cell Biology, 2013, 45, 1155-1164.	2.8	32
35	A mouse model of adult-onset anaemia due to erythropoietin deficiency. Nature Communications, 2013, 4, 1950.	12.8	68
36	Erythropoietin production in neuroepithelial and neural crest cells during primitive erythropoiesis. Nature Communications, 2013, 4, 2902.	12.8	39

#	Article	IF	CITATIONS
37	Diabetic nephropathy: are there new and potentially promising therapies targeting oxygen biology?. Kidney International, 2013, 84, 693-702.	5.2	60
38	Plasticity of Renal Erythropoietin-Producing Cells Governs Fibrosis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1599-1616.	6.1	160
39	Endogenous erythropoietin signaling facilitates skeletal muscle repair and recovery following pharmacologically induced damage. FASEB Journal, 2012, 26, 2847-2858.	0.5	41
40	Isolation and Characterization of Renal Erythropoietin-Producing Cells from Genetically Produced Anemia Mice. PLoS ONE, 2011, 6, e25839.	2.5	97
41	Acute erythropoietin cardioprotection is mediated by endothelial response. Basic Research in Cardiology, 2011, 106, 343-354.	5.9	59
42	Disrupted erythropoietin signalling promotes obesity and alters hypothalamus proopiomelanocortin production. Nature Communications, 2011, 2, 520.	12.8	83
43	Specific Contribution of the Erythropoietin Gene 3′ Enhancer to Hepatic Erythropoiesis after Late Embryonic Stages. Molecular and Cellular Biology, 2011, 31, 3896-3905.	2.3	54
44	Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. Journal of Clinical Investigation, 2011, 121, 3981-3990.	8.2	307
45	Fractionation of Mature Eosinophils in GATA-Reporter Transgenic Mice. Tohoku Journal of Experimental Medicine, 2010, 220, 127-138.	1.2	1
46	GATA2â€dependent and regionâ€specific regulation of <i>Gata2</i> transcription in the mouse midbrain. Genes To Cells, 2009, 14, 569-582.	1.2	12
47	Defining the Functional Boundaries of the Gata2 Locus by Rescue with a Linked Bacterial Artificial Chromosome Transgene. Journal of Biological Chemistry, 2008, 283, 8976-8983.	3.4	19
48	Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood, 2008, 111, 5223-5232.	1.4	188
49	A Gata2 intronic enhancer confers its pan-endothelia-specific regulation. Development (Cambridge), 2007, 134, 1703-1712.	2.5	89
50	Use of Geneâ€Manipulated Mice in the Study of Erythropoietin Gene Expression. Methods in Enzymology, 2007, 435, 157-177.	1.0	29
51	Combinatorial <i>Gata2</i> and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2202-2207.	7.1	100
52	Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes. Genes To Cells, 2006, 11, 685-700.	1.2	30
53	2-oxoglutarate downregulates expression of vascular endothelial growth factor and erythropoietin through decreasing hypoxia-inducible factor-11̂± and inhibits angiogenesis. Journal of Cellular Physiology, 2006, 209, 333-340.	4.1	41
54	Transgene Insertion in Proximity to thec- myb Gene Disrupts Erythroid-Megakaryocytic Lineage Bifurcation. Molecular and Cellular Biology, 2006, 26, 7953-7965.	2.3	66

#	Article	IF	CITATIONS
55	Important Role of Endogenous Erythropoietin System in Recruitment of Endothelial Progenitor Cells in Hypoxia-Induced Pulmonary Hypertension in Mice. Circulation, 2006, 113, 1442-1450.	1.6	195
56	Rapid turnover of GATA-2 via ubiquitin-proteasome protein degradation pathway. Genes To Cells, 2005, 10, 693-704.	1.2	57
57	GATA Motifs Regulate Early Hematopoietic Lineage-Specific Expression of the Gata2 Gene. Molecular and Cellular Biology, 2005, 25, 7005-7020.	2.3	70
58	Enhanced erythropoiesis mediated by activation of the reninâ€angiotensin system via angiotensin II type 1a receptor. FASEB Journal, 2005, 19, 2023-2025.	0.5	104
59	A Constitutively Active Arylhydrocarbon Receptor Induces Growth Inhibition of Jurkat T Cells through Changes in the Expression of Genes Related to Apoptosis and Cell Cycle Arrest. Journal of Biological Chemistry, 2004, 279, 25204-25210.	3.4	60
60	Multiple, Distant Gata2 Enhancers Specify Temporally and Tissue-Specific Patterning in the Developing Urogenital System. Molecular and Cellular Biology, 2004, 24, 10263-10276.	2.3	53
61	Oral administration of K-11706 inhibits GATA binding activity, enhances hypoxia-inducible factor 1 binding activity, and restores indicators in an in vivo mouse model of anemia of chronic disease. Blood, 2004, 104, 4300-4307.	1.4	76
62	Do β-globin, GATA-1,or EpoR regulatory domains specifically mark erythroid progenitors in transgenic reporter mice?. Blood, 2004, 104, 2988-2989.	1.4	2
63	HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO Journal, 2003, 22, 1134-1146.	7.8	220
64	Suppression of erythropoietin gene expression by cadmium depends on inhibition of HIF-1, not stimulation of GATA-2. Archives of Toxicology, 2003, 77, 267-273.	4.2	31
65	A GATAâ€specific inhibitor (Kâ€7174) rescues anemia induced by ILâ€1β, TNFâ€Î±, or l â€NMMA. FASEB Journal, 2 1742-1744.	2003, 17,	64
66	Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)–1promoter/enhancer during mouse embryogenesis. Blood, 2003, 101, 886-893.	1.4	68
67	Expression and domain-specific function of GATA-2 during differentiation of the hematopoietic precursor cells in midgestation mouse embryos. Blood, 2003, 102, 896-905.	1.4	96
68	Identification and characterization of 2 types of erythroid progenitors that express GATA-1 at distinct levels. Blood, 2003, 102, 3575-3583.	1.4	99
69	Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood, 2002, 100, 2279-2288.	1.4	198
70	GATA Suppresses Erythropoietin Gene Expression through GATA Site in Mouse Erythropoietin Gene Promoter. International Journal of Hematology, 2002, 75, 376-381.	1.6	24
71	L-arginine rescues decreased erythropoietin gene expression by stimulating GATA-2With L-NMMA. Kidney International, 2002, 61, 396-404.	5.2	12
72	Levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea–hypopnea syndrome. Blood, 2001, 98, 1255-1257.	1.4	94

#	Article	IF	CITATIONS
73	NG-monomethyl-l-arginine inhibits erythropoietin gene expression by stimulating GATA-2. Blood, 2000, 96, 1716-1722.	1.4	29
74	NG-monomethyl-l-arginine inhibits erythropoietin gene expression by stimulating GATA-2. Blood, 2000, 96, 1716-1722.	1.4	0
75	The Mouse GATA-2 Gene is Expressed in the Para-Aortic Splanchnopleura and Aorta-Gonads and Mesonephros Region. Blood, 1999, 93, 4196-4207.	1.4	102
76	The Mouse GATA-2 Gene is Expressed in the Para-Aortic Splanchnopleura and Aorta-Gonads and Mesonephros Region. Blood, 1999, 93, 4196-4207.	1.4	2
77	Left ventricular function of concentric hypertrophied heart after chronic pressure overload as studied in the isolated canine heart preparation The Japanese Journal of Physiology, 1984, 34, 613-628.	0.9	6
78	Analysis of Diastolic Pressure-Volume Relation of the Canine Left Ventricle: Half-Inflation Pressure as an Index of Left Ventricular Compliance. Tohoku Journal of Experimental Medicine, 1975, 117, 311-321.	1.2	6
79	Experimental Studies on the Coronary Insufficiency and the Cornary Occlusion. Tohoku Journal of Experimental Medicine, 1957, 66, 33-41.	1.2	3
80	Experimental Studies on the Coronary Insufficiency and the Coronary Occlusion. Tohoku Journal of Experimental Medicine, 1957, 66, 25-32.	1.2	12