Aprinda Indahlastari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5264849/publications.pdf

Version: 2024-02-01

20 489
papers citations

11 16
h-index g-index

20 20 docs citations

20 times ranked 472 citing authors

#	Article	IF	CITATIONS
1	Electric Field Strength From Prefrontal Transcranial Direct Current Stimulation Determines Degree of Working Memory Response: A Potential Application of Reverse-Calculation Modeling?. Neuromodulation, 2022, 25, 578-587.	0.8	25
2	White matter hyperintensities affect transcranial electrical stimulation in the aging brain. Brain Stimulation, 2021, 14, 69-73.	1.6	9
3	A Systematic Review and Meta-Analysis of Transcranial Direct Current Stimulation to Remediate Age-Related Cognitive Decline in Healthy Older Adults. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 971-990.	2.2	34
4	Individualized tDCS modeling predicts functional connectivity changes within the working memory network in older adults. Brain Stimulation, 2021, 14, 1205-1215.	1.6	31
5	Impact of Transcranial Direct Current Stimulation and Cognitive Training on Frontal Lobe Neurotransmitter Concentrations. Frontiers in Aging Neuroscience, 2021, 13, 761348.	3.4	7
6	Non-invasive Brain Stimulation., 2021,, 3516-3523.		0
7	Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimulation, 2020, 13, 1753-1764.	1.6	46
8	Modeling transcranial electrical stimulation in the aging brain. Brain Stimulation, 2020, 13, 664-674.	1.6	65
9	Effects of in-Scanner Bilateral Frontal tDCS on Functional Connectivity of the Working Memory Network in Older Adults. Frontiers in Aging Neuroscience, 2019, 11, 51.	3.4	51
10	Effects of Transcranial Direct Current Stimulation Paired With Cognitive Training on Functional Connectivity of the Working Memory Network in Older Adults. Frontiers in Aging Neuroscience, 2019, 11, 340.	3.4	50
11	Benchmarking transcranial electrical stimulation finite element models: a comparison study. Journal of Neural Engineering, 2019, 16, 026019.	3.5	13
12	Methods to monitor accurate and consistent electrode placements in conventional transcranial electrical stimulation. Brain Stimulation, 2019, 12, 267-274.	1.6	18
13	Brain Atrophy. , 2019, , 1-3.		2
14	Non-invasive Brain Stimulation. , 2019, , 1-8.		1
15	Low-Frequency Conductivity Tensor Imaging of the Human Head <italic>In Vivo</italic> Using DT-MREIT: First Study. IEEE Transactions on Medical Imaging, 2018, 37, 966-976.	8.9	43
16	Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects. Neural Plasticity, 2018, 2018, 1-10.	2.2	11
17	Non-invasive Brain Stimulation: Probing Intracortical Circuits and Improving Cognition in the Aging Brain. Frontiers in Aging Neuroscience, 2018, 10, 177.	3.4	53
18	Projected current density comparison in tDCS block and smooth FE modeling., 2016, 2016, 4079-4082.		1

#	Article	IF	CITATION
19	Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions. Journal of Neural Engineering, 2016, 13, 066006.	3.5	22
20	Hemodynamic characterization of geometric cerebral aneurysm templates. Journal of Biomechanics, 2016, 49, 2118-2126.	2.1	7