
Danny McCarroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5263874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate Signals in Stable Isotope Tree-Ring Records. Tree Physiology, 2022, , 537-579.	2.5	6
2	Dating of non-oak species in the United Kingdom historical buildings archive using stable oxygen isotopes. Dendrochronologia, 2021, 69, 125862.	2.2	10
3	Are there enormous age-trends in stable carbon isotope ratios of oak tree rings?. Holocene, 2020, 30, 1637-1642.	1.7	8
4	Summer precipitation for the England and Wales region, 1201–2000 <scp>ce</scp> , from stable oxygen isotopes in oak tree rings. Journal of Quaternary Science, 2020, 35, 731-736.	2.1	25
5	Reply to Comment by S. Helama and V. V. Matskovsky on"Absence of Ageâ€Related Trends in Stable Oxygen Isotope Ratios From Oak Tree Rings― Clobal Biogeochemical Cycles, 2020, 34, e2019GB006474.	4.9	3
6	Tree ring dating using oxygen isotopes: a master chronology for central England. Journal of Quaternary Science, 2019, 34, 475-490.	2.1	52
7	Absence of Ageâ€Related Trends in Stable Oxygen Isotope Ratios From Oak Tree Rings. Global Biogeochemical Cycles, 2019, 33, 841-848.	4.9	28
8	Oxygen isotope dendrochronology of Llwyn Celyn; One of the oldest houses in Wales. Dendrochronologia, 2019, 58, 125653.	2.2	12
9	Tree-ring isotopes suggest atmospheric drying limits temperature–growth responses of treeline bristlecone pine. Tree Physiology, 2019, 39, 983-999.	3.1	9
10	Cloud Cover Feedback Moderates Fennoscandian Summer Temperature Changes Over the Past 1,000ÂYears. Geophysical Research Letters, 2019, 46, 2811-2819.	4.0	12
11	Stable oxygen isotopes in Romanian oak tree rings record summer droughts and associated large-scale circulation patterns over Europe. Climate Dynamics, 2019, 52, 6557-6568.	3.8	31
12	New age constraints for the limit of the British–Irish Ice Sheet on the Isles of Scilly. Journal of Quaternary Science, 2017, 32, 48-62.	2.1	53
13	A simple stable carbon isotope method for investigating changes in the use of recent versus old carbon in oak. Tree Physiology, 2017, 37, 1021-1027.	3.1	32
14	Short-lived juvenile effects observed in stable carbon and oxygen isotopes of UK oak trees and historic building timbers. Chemical Geology, 2017, 472, 1-7.	3.3	25
15	Internal dynamics condition centennial-scale oscillations in marine-based ice-stream retreat. Geology, 2017, 45, 787-790.	4.4	41
16	North Atlantic summer storm tracks over Europe dominated by internal variability over the pastÂmillennium. Nature Geoscience, 2016, 9, 630-635.	12.9	28
17	Trimline Trauma: The Wider Implications of a Paradigm Shift in Recognising and Interpreting Glacial Limits. Scottish Geographical Journal, 2016, 132, 130-139.	1.1	13
18	Absence of juvenile effects confirmed in stable carbon and oxygen isotopes of European larch trees. Acta Silvae Et Ligni, 2016, 111, 27-33.	0.2	12

#	Article	IF	CITATIONS
19	Measuring the skill of variance-scaled climate reconstructions and a test for the capture of extremes. Holocene, 2015, 25, 618-626.	1.7	35
20	The 225-year precipitation variability inferred from tree-ring records in Shanxi Province, the North China, and its teleconnection with Indian summer monsoon. Global and Planetary Change, 2015, 132, 11-19.	3.5	33
21	Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall. Climate Dynamics, 2015, 45, 3609-3622.	3.8	55
22	â€~Study the past, if you would divine the future': a retrospective on measuring and understanding Quaternary climate change. Journal of Quaternary Science, 2015, 30, 154-187.	2.1	36
23	Spatial variability and temporal trends in waterâ€use efficiency of European forests. Global Change Biology, 2014, 20, 3700-3712.	9.5	175
24	A 520Âyear record of summer sunshine for the eastern European Alps based on stable carbon isotopes in larch tree rings. Climate Dynamics, 2014, 43, 971-980.	3.8	31
25	Continental-scale temperature variability during the past two millennia. Nature Geoscience, 2013, 6, 339-346.	12.9	954
26	Comparing the performance of different stomatal conductance models using modelled and measured plant carbon isotope ratios (l´ ¹³ C): implications for assessing physiological forcing. Global Change Biology, 2013, 19, 1709-1719.	9.5	15
27	Stable carbon isotopes from TornetrÃsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quaternary Science Reviews, 2013, 62, 97-113.	3.0	109
28	Position-specific measurement of oxygen isotope ratios in cellulose: Isotopic exchange during heterotrophic cellulose synthesis. Geochimica Et Cosmochimica Acta, 2013, 112, 178-191.	3.9	44
29	Quantifying uncertainty in isotope dendroclimatology. Holocene, 2013, 23, 1221-1226.	1.7	39
30	A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe. Holocene, 2013, 23, 471-484.	1.7	100
31	Bayesian modelling the retreat of the Irish Sea Ice Stream. Journal of Quaternary Science, 2013, 28, 200-209.	2.1	93
32	Multi-archive summer temperature reconstruction for the European Alps, ADÂ1053–1996. Quaternary Science Reviews, 2012, 46, 66-79.	3.0	59
33	Estimating uncertainty in pooled stable isotope time-series from tree-rings. Chemical Geology, 2012, 294-295, 243-248.	3.3	28
34	A rapid method for the production of robust millennial length stable isotope tree ring series for climate reconstruction. Global and Planetary Change, 2012, 82-83, 96-103.	3.5	24
35	Common temperature signal in four wellâ€replicated tree growth series from northern Fennoscandia. Journal of Quaternary Science, 2012, 27, 828-834.	2.1	3
36	Highâ€ŧemperature pyrolysis/gas chromatography/isotope ratio mass spectrometry: simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose. Rapid Communications in Mass Spectrometry, 2012, 26, 109-114.	1.5	28

#	Article	IF	CITATIONS
37	Central England temperature since AD 1850: the potential of stable carbon isotopes in British oak trees to reconstruct past summer temperatures. Journal of Quaternary Science, 2012, 27, 606-614.	2.1	39
38	Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Climate Dynamics, 2012, 39, 495-507.	3.8	68
39	Age trends in tree ring growth and isotopic archives: A case study of <i>Pinus sylvestris</i> L. from northwestern Norway. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	74
40	Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	78
41	A large scale comparative study of stable carbon isotope ratios determined using on-line combustion and low-temperature pyrolysis techniques. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300, 23-28.	2.3	18
42	Periglacial trimlines and the extent of the Kerry-Cork Ice Cap, SW Ireland. Quaternary Science Reviews, 2011, 30, 3834-3845.	3.0	30
43	Evidence of changing intrinsic waterâ€use efficiency under rising atmospheric CO ₂ concentrations in Boreal Fennoscandia from subfossil leaves and tree ring <i>δ</i> ¹³ C ratios. Global Change Biology, 2011, 17, 1064-1072.	9.5	79
44	An annually resolved bristlecone pine carbon isotope chronology for the last millennium. Quaternary Research, 2011, 76, 22-29.	1.7	33
45	Climate signals in the ring widths and stable carbon, hydrogen and oxygen isotopic composition of Larix decidua growing at the forest limit in the southeastern European Alps. Trees - Structure and Function, 2011, 25, 1141-1154.	1.9	34
46	A critical evaluation of multiâ€proxy dendroclimatology in northern Finland. Journal of Quaternary Science, 2011, 26, 7-14.	2.1	43
47	Spring temperature variability in northern Fennoscandia AD 1693–2011. Journal of Quaternary Science, 2011, 26, 566-570.	2.1	17
48	Recent trends in the intrinsic water-use efficiency of ringless rainforest trees in Borneo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3330-3339.	4.0	54
49	Blue Intensity In Pinus sylvestris Tree Rings: A Manual for A New Palaeoclimate Proxy. Tree-Ring Research, 2011, 67, 127-134.	0.6	54
50	Stable Isotopes in Dendroclimatology: Moving Beyond â€~Potential'. Developments in Paleoenvironmental Research, 2011, , 147-172.	8.0	30
51	Exposure-age constraints on the extent, timing and rate of retreat of the last Irish Sea ice stream. Quaternary Science Reviews, 2010, 29, 1844-1852.	3.0	59
52	Future climate change and the British Quaternary research community. Quaternary Science Reviews, 2010, 29, 1661-1672.	3.0	18
53	Climate variability of the British Isles and adjoining seas. Quaternary Science Reviews, 2010, 29, 1503-1506.	3.0	1
54	Reinterpreting Rotherslade, Gower Peninsula: implications for Last Glacial ice limits and Quaternary stratigraphy of the British Isles. Journal of Quaternary Science, 2009, 24, 399-410.	2.1	11

#	Article	IF	CITATIONS
55	The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees - Structure and Function, 2009, 23, 169-180.	1.9	67
56	Spatial and temporal stability of the climatic signal in northern Fennoscandian pine treeâ€ring width and maximum density. Boreas, 2009, 38, 1-12.	2.4	33
57	Stable isotope coherence in the earlywood and latewood of tree-line conifers. Chemical Geology, 2009, 268, 52-57.	3.3	49
58	Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochimica Et Cosmochimica Acta, 2009, 73, 1539-1547.	3.9	244
59	Dimensions and chronology of the last ice sheet in Western Ireland. Quaternary Science Reviews, 2008, 27, 185-200.	3.0	54
60	Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chemical Geology, 2008, 252, 62-71.	3.3	119
61	Do tree ring δ13C series from Pinus sylvestris in northern Fennoscandia contain long-term non-climatic trends?. Chemical Geology, 2008, 252, 42-51.	3.3	91
62	Characterizing carbon isotopic variability in Sphagnum. Holocene, 2007, 17, 403-410.	1.7	59
63	Exorcising the `segment length curse': summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene, 2007, 17, 435-446.	1.7	159
64	Extracting Climatic Information from Stable Isotopes in Tree Rings. Journal of Nano Education (Print), 2007, 1, 25-48.	0.3	37
65	Blue intensity in <i>Pinus sylvestris</i> tree-rings: developing a new palaeoclimate proxy. Holocene, 2007, 17, 821-828.	1.7	102
66	The Donegal ice dome, northwest Ireland: dimensions and chronology. Journal of Quaternary Science, 2007, 22, 773-783.	2.1	56
67	The surface geometry of the Last Glacial Maximum ice sheet in the AndÃya‣kÃ¥nland region, northern Norway, constrained by surface exposure dating and clay mineralogy. Boreas, 2007, 36, 227-239.	2.4	33
68	Extracting Climatic Information from Stable Isotopes in Tree Rings. , 2007, , 27-48.		21
69	The surface geometry of the Last Glacial Maximum ice sheet in the AndÃ.ya-SkÃ¥nland region, northern Norway, constrained by surface exposure dating and clay mineralogy. Boreas, 2007, 36, 227-239.	2.4	4
70	ISOTOPES IN TREE RINGS. , 2006, , 67-116.		23
71	New evidence for a grounded Irish Sea glaciation of the Isles of Scilly, UK. Quaternary Science Reviews, 2006, 25, 299-309.	3.0	68
72	Vertical dimensions and age of the Wicklow Mountains ice dome, Eastern Ireland, and implications for the extent of the last Irish Ice Sheet. Quaternary Science Reviews, 2006, 25, 2048-2058.	3.0	65

#	Article	IF	CITATIONS
73	Combining Ring Width, Density and Stable Carbon Isotope Proxies to Enhance the Climate Signal in Tree-Rings: An Example from the Southern French Alps. Climatic Change, 2006, 78, 363-379.	3.6	74
74	Latewood Width, Maximum Density, and Stable Carbon Isotope Ratios of Pine as Climate Indicators in a Dry Subalpine Environment, French Alps. Arctic, Antarctic, and Alpine Research, 2004, 36, 166-171.	1.1	81
75	Stable isotopes in tree rings. Quaternary Science Reviews, 2004, 23, 771-801.	3.0	1,403
76	Deformation styles as a key for interpreting glacial depositional environments. Journal of Quaternary Science, 2003, 18, 473-489.	2.1	93
77	Upheaval from the abyss: ocean floor mapping and the earth science revolution. Area, 2003, 35, 223-224.	1.6	Ο
78	Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 196, 395-407.	2.3	292
79	Multiproxy dendroclimatology: a pilot study in northern Finland. Holocene, 2003, 13, 829-838.	1.7	135
80	Blue Reflectance Provides a Surrogate for Latewood Density of High-Latitude Pine Tree Rings. Arctic, Antarctic, and Alpine Research, 2002, 34, 450.	1.1	42
81	Blue Reflectance Provides a Surrogate for Latewood Density of High-latitude Pine Tree Rings. Arctic, Antarctic, and Alpine Research, 2002, 34, 450-453.	1.1	103
82	Amino-acid geochronology and the British Pleistocene: secure stratigraphical framework or a case of circular reasoning?. Journal of Quaternary Science, 2002, 17, 647-651.	2.1	32
83	Deglaciation of the Irish Sea Basin: a critique of the glaciomarine hypothesis. Journal of Quaternary Science, 2001, 16, 393-404.	2.1	55
84	Introduction: The glaciation of the Irish Sea basin. Journal of Quaternary Science, 2001, 16, 391-392.	2.1	5
85	Enhanced rockfall activity during the Little Ice Age: further lichenometric evidence from a Norwegian talus. Permafrost and Periglacial Processes, 2001, 12, 157-164.	3.4	37
86	Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene, 2001, 11, 517-526.	1.7	164
87	The last ice sheet in Snowdonia. Journal of Quaternary Science, 2000, 15, 765-778.	2.1	56
88	Foraminifera from the glacigenic deposits at Broughton Bay, South Wales: evidence for glacimarine or terrestrial ice-sheet deglaciation of the Irish Sea Basin?. Proceedings of the Geologists Association, 2000, 111, 147-152.	1.1	11
89	Spectral roughness of glaciated bedrock geomorphic surfaces: Implications for glacier sliding. Journal of Geophysical Research, 2000, 105, 21295-21303.	3.3	44
90	Clastic dykes in over-consolidated tills: evidence for subglacial hydrofracturing at Killiney Bay, eastern Ireland. Sedimentary Geology, 1999, 129, 111-126.	2.1	130

#	Article	IF	CITATIONS
91	The use of shallow seismic techniques to characterize sub-surface Quaternary deposits: the example of Porth Neigwl (Hells Mouth Bay), Gwynedd, N. Wales. Quarterly Journal of Engineering Geology and Hydrogeology, 1999, 32, 119-137.	1.4	3
92	Spatial and Temporal Patterns of Late Holocene Rockfall Activity on a Norwegian Talus Slope: A Lichenometric and Simulation-Modeling Approach. Arctic and Alpine Research, 1998, 30, 51.	1.3	54
93	THE LAST ICE SHEET IN NORTH-WEST SCOTLAND: RECONSTRUCTION AND IMPLICATIONS. Quaternary Science Reviews, 1998, 17, 1149-1184.	3.0	145
94	Stable carbon isotope ratios of latewood cellulose in Pinus sylvestris from northern Finland: variability and signal-strength. Holocene, 1998, 8, 675-684.	1.7	76
95	Maximum altitude of the Late Devensian ice sheet on the Isle of Rum. Scottish Journal of Geology, 1997, 33, 183-186.	0.1	17
96	Glaciotectonized quaternary sediments at Dinas Dinlle, Gwynedd, North Wales, and their bearing on the style of deglaciation in the Eastern Irish Sea. Quaternary Science Reviews, 1997, 16, 109-127.	3.0	63
97	Periglacial trimlines, former nunataks and the altitude of the last ice sheet in Wester Ross, northwest Scotland. Journal of Quaternary Science, 1997, 12, 225-238.	2.1	48
98	A template for calculating rock surface roughness. Earth Surface Processes and Landforms, 1997, 22, 1229-1230.	2.5	13
99	ROCK SURFACE ROUGHNESS AS AN INDICATOR OF DEGREE OF ROCK SURFACE WEATHERING. Earth Surface Processes and Landforms, 1996, 21, 963-977.	2.5	66
100	Maximum altitude of Devensian glaciation on the Isle of Skye. Scottish Journal of Geology, 1996, 32, 107-115.	0.1	29
101	Degree of rock surface weathering on fjell summits in northern Finland: implications for the thermal regime of the last ice sheet. Boreas, 1996, 25, 1-7.	2.4	0
102	The vertical dimensions of Late Devensian glaciation on the mountains of Harris and southeast Lewis, Outer Hebrides, Scotland. Journal of Quaternary Science, 1995, 10, 211-223.	2.1	44
103	Rock-weathering by the lichenLecidea auriculata in an arctic alpine environment. Earth Surface Processes and Landforms, 1995, 20, 199-206.	2.5	75
104	Late-holocene snow-avalanche activity in southern norway: Interpreting lichen size–frequency distributions using an alternative to simulation modelling. Earth Surface Processes and Landforms, 1995, 20, 465-471.	2.5	17
105	Lichens: Lichenometric dating of diachronous surfaces. Earth Surface Processes and Landforms, 1995, 20, 829-831.	2.5	3
106	Geomorphological evidence from the Lleyn Peninsula constraining models of the magnitude and rate of isostatic rebound during deglaciation of the Irish Sea Basin. Geological Journal, 1995, 30, 157-163.	1.3	14
107	Pronival ("Protalus") Ramparts in the Romsdalsalpane, Southern Norway: Forms, Terms, Subnival Processes, and Alternative Mechanisms of Formation. Arctic and Alpine Research, 1995, 27, 271.	1.3	30
108	Nunataks of the last ice sheet in northwest Scotland. Boreas, 1995, 24, 305-323.	2.4	51

#	Article	IF	CITATIONS
109	Contemporary terminalâ€moraine ridge formation at a temperate glacier: Styggedalsbreen, Jotunheimen, southern Norway. Boreas, 1995, 24, 129-139.	2.4	58
110	A new approach to lichenometry: dating single-age and diachronous surfaces. Holocene, 1994, 4, 383-396.	1.7	47
111	Degree of rock surface weathering as an indicator of ice-sheet thickness along an east—west transect across southern Norway. Journal of Quaternary Science, 1994, 9, 337-347.	2.1	30
112	Snow-Avalanche Impact Landforms in Breheimen, Southern Norway: Origin, Age, and Paleoclimatic Implications. Arctic and Alpine Research, 1994, 26, 103.	1.3	35
113	Snow-Avalanche Impact Landforms: A Brief Discussion of Terminology. Arctic and Alpine Research, 1994, 26, 128.	1.3	16
114	Modelling late-holocene snow-avalanche activity: Incorporating a new approach to lichenometry. Earth Surface Processes and Landforms, 1993, 18, 527-539.	2.5	40
115	The vertical extent of ice sheets in Nordfjord, western Norway: measuring degree of rock surface weathering. Boreas, 1993, 22, 255-265.	2.4	45
116	The glacigenic deposits of Western Lleyn, North Wales: Terrestrial or marine?. Journal of Quaternary Science, 1992, 7, 19-29.	2.1	43
117	Foraminifera from the Irish Sea glacigenic deposits at Aberdaron, western Lleyn, North Wales: Palaeoenvironmental implications. Journal of Quaternary Science, 1992, 7, 311-317.	2.1	34
118	A new instrument and techniques for the field measurement of rock surface roughness. Zeitschrift Für Geomorphologie, 1992, 36, 69-79.	0.8	30
119	Ice directions in western lleyn and the status of the gwynedd readvance of the last irish sea glacier. Geological Journal, 1991, 26, 137-143.	1.3	16
120	The schmidt hammer, weathering and rock surface roughness. Earth Surface Processes and Landforms, 1991, 16, 477-480.	2.5	61
121	Relative-age dating of inorganic deposits: the need for a more critical approach. Holocene, 1991, 1, 174-180.	1.7	30
122	The age and origin of Neoglacial moraines in Jotunheimen, southern Norway: new evidence from weatheringâ€based data. Boreas, 1991, 20, 283-295.	2.4	31
123	A comment on â€~enhanced boulder weathering under late-lying snow patches' by ballantyne, C. K., Black, N. M., and Finlay, D. P Earth Surface Processes and Landforms, 1990, 15, 467-469.	2.5	11
124	Differential weathering of feldspar and pyroxene in an arctic-alpine environment. Earth Surface Processes and Landforms, 1990, 15, 641-651.	2.5	30
125	"Striations―Produced by Catastrophic Subglacial Drainage of a Glacier-dammed Lake, MjÃ,lkedalsbreen, Southern Norway. Journal of Glaciology, 1989, 35, 193-196.	2.2	6
126	Potential and Limitations of the Schmidt Hammer for Relative-Age Dating: Field Tests on Neoglacial Moraines, Jotunheimen, Southern Norway. Arctic and Alpine Research, 1989, 21, 268.	1.3	85

#	Article	IF	CITATIONS
127	Average Glacial Conditions and the Landscape of Snowdonia. , 0, , 266-268.		5