Shang-Tian Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5263050/publications.pdf Version: 2024-02-01

	16791	42259
14,042	66	96
citations	h-index	g-index
337	337	11448
docs citations	times ranked	citing authors
	14,042 citations 337 docs citations	14,04266citationsh-index337337docs citations337times ranked

#	Article	IF	CITATIONS
1	Effects of orphan histidine kinases on clostridial sporulation progression and metabolism. Biotechnology and Bioengineering, 2022, 119, 226-235.	1.7	6
2	Consolidated bioprocessing for ethanol and butanol production from lignocellulosic biomass: Recent advances in strain and process engineering. , 2022, , 473-506.		2
3	Electricity-enhanced anaerobic, non-photosynthetic mixotrophy by Clostridium carboxidivorans with increased carbon efficiency and alcohol production. Energy Conversion and Management, 2022, 252, 115118.	4.4	15
4	Two olor fluorescent proteins reporting survivin regulation in breast cancer cells for high throughput drug screening. Biotechnology and Bioengineering, 2022, 119, 1004-1017.	1.7	4
5	Regulator RcsB Controls Prodigiosin Synthesis and Various Cellular Processes in Serratia marcescens JNB5-1. Applied and Environmental Microbiology, 2021, 87, .	1.4	13
6	Effects of benzyl viologen on increasing NADH availability, acetate assimilation, and butyric acid production by Clostridium tyrobutyricum. Biotechnology and Bioengineering, 2021, 118, 770-783.	1.7	14
7	Sustainable production and biomedical application of polymalic acid from renewable biomass and food processing wastes. Critical Reviews in Biotechnology, 2021, 41, 216-228.	5.1	15
8	Benchâ€scale fermentation for second generation ethanol and hydrogen production by <scp><i>Clostridium thermocellum</i> DSMZ</scp> 1313 from sugarcane bagasse. Environmental Progress and Sustainable Energy, 2021, 40, e13516.	1.3	7
9	Inside Front Cover Image, Volume 118, Number 2, February 2021. Biotechnology and Bioengineering, 2021, 118, ii.	1.7	Ο
10	A Novel Inulin-Mediated Ethanol Precipitation Method for Separating Endo-Inulinase From Inulinases for Inuloaligosaccharides Production From Inulin. Frontiers in Bioengineering and Biotechnology, 2021, 9, 679720.	2.0	4
11	Comparative transcriptome analysis reveals metabolic regulation of prodigiosin in Serratia marcescens. Systems Microbiology and Biomanufacturing, 2021, 1, 323-335.	1.5	4
12	Engineering <i>Clostridium cellulovorans</i> for highly selective <i>n</i> â€butanol production from cellulose in consolidated bioprocessing. Biotechnology and Bioengineering, 2021, 118, 2703-2718.	1.7	15
13	Engineering the 2,3-BD pathway in Bacillus subtilis by shifting the carbon flux in favor of 2,3-BD synthesis. Biochemical Engineering Journal, 2021, 169, 107969.	1.8	5
14	Butanol production from Saccharina japonica hydrolysate by engineered Clostridium tyrobutyricum: The effects of pretreatment method and heat shock protein overexpression. Bioresource Technology, 2021, 335, 125290.	4.8	19
15	Characterization of fermented soymilk by Schleiferilactobacillus harbinensis M1, based on the whole-genome sequence and corresponding phenotypes. LWT - Food Science and Technology, 2021, 144, 111237.	2.5	8
16	Enhanced Prodigiosin Production in <i>Serratia marcescens</i> JNB5-1 by Introduction of a Polynucleotide Fragment into the <i>pigN</i> 3′ Untranslated Region and Disulfide Bonds into <i>O</i> -Methyl Transferase (PigF). Applied and Environmental Microbiology, 2021, 87, e0054321.	1.4	4
17	Optimization and comparison of the production of galactooligosaccharides using free or immobilized Aspergillus oryzae β-galactosidase, followed by purification using silica gel. Food Chemistry, 2021, 362, 130195.	4.2	8
18	Energy-efficient butanol production by <i>Clostridium acetobutylicum</i> with histidine kinase knockouts to improve strain tolerance and process robustness. Green Chemistry, 2021, 23, 2155-2168.	4.6	42

#	Article	IF	CITATIONS
19	A Potential Probiotic for Diarrhea: Clostridium tyrobutyricum Protects Against LPS-Induced Epithelial Dysfunction via IL-22 Produced By Th17 Cells in the lleum. Frontiers in Immunology, 2021, 12, 758227.	2.2	5
20	Editorial: Development and Application of Clostridia as Microbial Cell-Factories for Biofuels and Biochemicals Production. Frontiers in Bioengineering and Biotechnology, 2021, 9, 831135.	2.0	1
21	Engineered disulfide bonds improve thermostability and activity of Lâ€isoleucine hydroxylase for efficient 4â€HIL production in Bacillus subtilis 168. Engineering in Life Sciences, 2020, 20, 7-16.	2.0	10
22	Intracellular metabolism analysis of Clostridium cellulovorans via modeling integrating proteomics, metabolomics and fermentation. Process Biochemistry, 2020, 89, 9-19.	1.8	7
23	Acetone, butanol, and ethanol production from puerariae slag hydrolysate through ultrasound-assisted dilute acid by Clostridium beijerinckii YBS3. Bioresource Technology, 2020, 316, 123899.	4.8	6
24	Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum. World Journal of Microbiology and Biotechnology, 2020, 36, 138.	1.7	43
25	Comparative transcriptome analysis of Clostridium tyrobutyricum expressing a heterologous uptake hydrogenase. Science of the Total Environment, 2020, 749, 142022.	3.9	12
26	A novel β-galactosidase from Klebsiella oxytoca ZJUH1705 for efficient production of galacto-oligosaccharides from lactose. Applied Microbiology and Biotechnology, 2020, 104, 6161-6172.	1.7	24
27	Improved Prodigiosin Production by Relieving CpxR Temperature-Sensitive Inhibition. Frontiers in Bioengineering and Biotechnology, 2020, 8, 344.	2.0	20
28	High-Performance <i>n</i> -Butanol Recovery from Aqueous Solution by Pervaporation with a PDMS Mixed Matrix Membrane Filled with Zeolite. Industrial & Engineering Chemistry Research, 2020, 59, 7777-7786.	1.8	34
29	LysR-Type Transcriptional Regulator MetR Controls Prodigiosin Production, Methionine Biosynthesis, Cell Motility, H ₂ O ₂ Tolerance, Heat Tolerance, and Exopolysaccharide Synthesis in Serratia marcescens. Applied and Environmental Microbiology, 2020, 86, .	1.4	31
30	Production of n-butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing adhE2: Kinetics and cost analysis. Bioresource Technology, 2019, 292, 121969.	4.8	40
31	Potential of hydrogen production from sugarcane juice by Ethanoligenens harbinense Yuan-3. Journal of Cleaner Production, 2019, 237, 117552.	4.6	18
32	n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor. Bioresource Technology, 2019, 289, 121749.	4.8	52
33	Development of a dual fluorescence system for simultaneous detection of two cell populations in a 3D coculture. Process Biochemistry, 2019, 86, 144-150.	1.8	1
34	Development of an in vivo fluorescence based gene expression reporter system for Clostridium tyrobutyricum. Journal of Biotechnology, 2019, 305, 18-22.	1.9	12
35	Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440. Microbial Cell Factories, 2019, 18, 12.	1.9	14
36	Design of a highâ€efficiency synthetic system for <scp>l</scp> â€asparaginase production in <i>Bacillus subtilis</i> . Engineering in Life Sciences, 2019, 19, 229-239.	2.0	10

#	Article	IF	CITATIONS
37	Engineering Clostridium for improved solvent production: recent progress and perspective. Applied Microbiology and Biotechnology, 2019, 103, 5549-5566.	1.7	67
38	Development of a shuttle plasmid without host restriction sites for efficient transformation and heterologous gene expression in Clostridium cellulovorans. Applied Microbiology and Biotechnology, 2019, 103, 5391-5400.	1.7	6
39	A Dual Fluorescent 3-D Multicellular Coculture of Breast Cancer MCF-7 and Fibroblast NIH-3T3 Cells for High Throughput Cancer Drug Screening. Biochemical Engineering Journal, 2019, 148, 152-161.	1.8	11
40	Designing of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Production of 1,2-Amino Alcohols from Epoxides. ACS Synthetic Biology, 2019, 8, 734-743.	1.9	34
41	Proteomics insight into the production of monoclonal antibody. Biochemical Engineering Journal, 2019, 145, 177-185.	1.8	10
42	Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. Bioresource Technology, 2019, 284, 415-423.	4.8	71
43	An engineered mouse embryonic stem cell model with survivin as a molecular marker and EGFP as the reporter for high throughput screening of embryotoxic chemicals in vitro. Biotechnology and Bioengineering, 2019, 116, 1656-1668.	1.7	6
44	n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases. Bioresource Technology, 2019, 285, 121316.	4.8	38
45	Engineering Stem Cell Environments in Bioreactors. , 2019, , 551-551.		1
46	Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Critical Reviews in Biotechnology, 2019, 39, 408-421.	5.1	55
47	Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of <i>Mycobacterium neoaurum</i> for improved androst-1,4-diene-3,17-dione production. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 635-647.	1.4	21
48	3D cell coculture tumor model: A promising approach for future cancer drug discovery. Process Biochemistry, 2019, 78, 148-160.	1.8	37
49	A fluorescent 3D cell culture assay for high throughput screening of cancer drugs down-regulating survivin. Journal of Biotechnology, 2019, 289, 80-87.	1.9	11
50	Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: Genomic analysis and experimental studies. Genomics, 2019, 111, 1687-1694.	1.3	10
51	Metabolic responses of Aspergillus terreus under low dissolved oxygen and pH levels. Annals of Microbiology, 2018, 68, 195-205.	1.1	4
52	Glu56Ser mutation improves the enzymatic activity and catalytic stability of Bacillus subtilis l-aspartate α-decarboxylase for an efficient β-alanine production. Process Biochemistry, 2018, 70, 117-123.	1.8	21
53	Effective and simple recovery of 1,3-propanediol from a fermented medium by liquid–liquid extraction system with ethanol and K 3 PO 4. Chinese Journal of Chemical Engineering, 2018, 26, 104-108.	1.7	8
54	Biotransformation of soy flour isoflavones by <i>Aspergillus niger</i> NRRL 3122 β-glucosidase enzyme. Natural Product Research, 2018, 32, 2382-2391.	1.0	18

#	Article	IF	CITATIONS
55	Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis. Bioresource Technology, 2018, 250, 1-9.	4.8	60
56	Butyric acid: Applications and recent advances in its bioproduction. Biotechnology Advances, 2018, 36, 2101-2117.	6.0	100
57	Production of butyric acid from acid hydrolysate of corn husk in fermentation by Clostridium tyrobutyricum: kinetics and process economic analysis. Biotechnology for Biofuels, 2018, 11, 164.	6.2	42
58	Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Scientific Reports, 2018, 8, 7915.	1.6	27
59	Response Surface Methodology for Optimization of Genistein Content in Soy Flour and its Effect on the Antioxidant Activity. Iranian Journal of Pharmaceutical Research, 2018, 17, 1026-1035.	0.3	1
60	Enhanced intracellular soluble production of 3â€ketosteroidâ€ <scp>Δ¹</scp> â€dehydrogenase from <i>Mycobacterium neoaurum</i> in <i>Escherichia coli</i> and its application in the androstâ€1,4â€dieneâ€3,17â€dione production. Journal of Chemical Technology and Biotechnology, 2017, 92, 350-357.	1.6	8
61	Development of a multi-enzymatic desymmetrization and its application for the biosynthesis of l -norvaline from dl -norvaline. Process Biochemistry, 2017, 55, 104-109.	1.8	12
62	Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnology Advances, 2017, 35, 310-322.	6.0	208
63	n-Butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2. Bioresource Technology, 2017, 233, 51-57.	4.8	43
64	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice. Applied Microbiology and Biotechnology, 2017, 101, 4327-4337.	1.7	37
65	Effects of salting-out and salting-out extraction on the separation of butyric acid. Separation and Purification Technology, 2017, 180, 44-50.	3.9	38
66	Quality Evaluation Focusing on Tissue Fractal Dimension and Chemical Changes for Frozen Tilapia with Treatment by Tangerine Peel Extract. Scientific Reports, 2017, 7, 42202.	1.6	14
67	Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Critical Reviews in Biotechnology, 2017, 37, 990-1005.	5.1	77
68	Moderate alkali-thermophilic ethanologenesis by locally isolated Bacillus licheniformis from Pakistan employing sugarcane bagasse: a comparative aspect of aseptic and non-aseptic fermentations. Biotechnology for Biofuels, 2017, 10, 105.	6.2	8
69	Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization. Bioresource Technology, 2017, 234, 389-396.	4.8	71
70	Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ ¹ -dehydrogenase and catalase in <i>Bacillus subtilis</i> . Journal of Applied Microbiology, 2017, 122, 119-128.	1.4	23
71	Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose. Metabolic Engineering, 2017, 40, 50-58.	3.6	78
72	Reconstruction of a genome-scale metabolic model and in silico analysis of the polymalic acid producer Aureobasidium pullulans CCTCC M2012223. Gene, 2017, 607, 1-8.	1.0	18

#	Article	IF	CITATIONS
73	Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. Journal of Biotechnology, 2017, 263, 36-44.	1.9	35
74	l-Lactic acid production from liquefied cassava starch by thermotolerant Rhizopus microsporus: Characterization and optimization. Process Biochemistry, 2017, 63, 26-34.	1.8	34
75	Tailoring the Oxidative Stress Tolerance of <i>Clostridium tyrobutyricum</i> CCTCC W428 by Introducing Trehalose Biosynthetic Capability. Journal of Agricultural and Food Chemistry, 2017, 65, 8892-8901.	2.4	14
76	Process engineering of cellulosic n-butanol production from corn-based biomass using Clostridium cellulovorans. Process Biochemistry, 2017, 62, 144-150.	1.8	28
77	Efficient production of d-amino acid oxidase in Escherichia coli by a trade-off between its expression and biomass using N-terminal modification. Bioresource Technology, 2017, 243, 716-723.	4.8	6
78	Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB. Bioresource Technology, 2017, 243, 1000-1008.	4.8	40
79	Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis. Bioresource Technology, 2017, 223, 166-174.	4.8	88
80	Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics. Bioresource Technology, 2017, 224, 581-589.	4.8	42
81	Bridging chemical- and bio-catalysis: high-value liquid transportation fuel production from renewable agricultural residues. Green Chemistry, 2017, 19, 660-669.	4.6	46
82	Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 276-284.	1.3	51
83	Rebalancing Redox to Improve Biobutanol Production by Clostridium tyrobutyricum. Bioengineering, 2016, 3, 2.	1.6	11
84	Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars. Biotechnology for Biofuels, 2016, 9, 137.	6.2	30
85	Extracellular biosynthesis of antiâ€≺i>Candida silver ‎nanoparticles using <i>Monascus purpureus</i> . Journal of Basic Microbiology, 2016, 56, 531-540.	1.8	59
86	Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochemistry, 2016, 51, 1331-1337.	1.8	30
87	A novel <i>in situ</i> gas strippingâ€pervaporation process integrated with acetoneâ€butanolâ€ethanol fermentation for hyper nâ€butanol production. Biotechnology and Bioengineering, 2016, 113, 120-129.	1.7	138
88	In vitro 3-D multicellular models for cytotoxicity assay and drug screening. Process Biochemistry, 2016, 51, 772-780.	1.8	10
89	Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering. Bioresource Technology, 2016, 212, 100-110.	4.8	72
90	Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for xylose fermentation. Bioresource Technology, 2016, 219, 91-97.	4.8	29

#	Article	IF	CITATIONS
91	Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption. Bioresource Technology, 2016, 219, 158-168.	4.8	123
92	Butyric acid production from oilseed rape straw by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Process Biochemistry, 2016, 51, 1930-1934.	1.8	34
93	Restriction modification system analysis and development of in vivo methylation for the transformation of Clostridium cellulovorans. Applied Microbiology and Biotechnology, 2016, 100, 2289-2299.	1.7	31
94	A mutant form of 3-ketosteroid-Δ1-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by <i>Mycobacterium neoaurum</i> ST-095. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 691-701.	1.4	23
95	Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass. Advances in Biochemical Engineering/Biotechnology, 2016, 156, 323-361.	0.6	30
96	Impacts of lignocellulose-derived inhibitors on l-lactic acid fermentation by Rhizopus oryzae. Bioresource Technology, 2016, 203, 173-180.	4.8	68
97	Efficient testosterone production by engineered Pichia pastoris co-expressing human 17β-hydroxysteroid dehydrogenase type 3 and Saccharomyces cerevisiae glucose 6-phosphate dehydrogenase with NADPH regeneration. Green Chemistry, 2016, 18, 1774-1784.	4.6	43
98	Amino acid residues adjacent to the catalytic cavity of tetramer l-asparaginase II contribute significantly to its catalytic efficiency and thermostability. Enzyme and Microbial Technology, 2016, 82, 15-22.	1.6	35
99	Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from <i>Corynebacterium crenatum </i> SYPA5-5. Letters in Applied Microbiology, 2015, 61, 573-579.	1.0	10
100	Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3â€butanediol proportion in <i>Bacillus subtilis</i> . Biotechnology Journal, 2015, 10, 1298-1306.	1.8	45
101	Phase separation in a salting-out extraction system of ethanol–ammonium sulfate. Separation and Purification Technology, 2015, 148, 32-37.	3.9	34
102	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing α-glucosidase. Applied Microbiology and Biotechnology, 2015, 99, 6155-6165.	1.7	23
103	Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: Effects of overexpressing three biotin-dependent carboxylases. Process Biochemistry, 2015, 50, 194-204.	1.8	34
104	Development of a plasmid addicted system that is independent of co-inducers, antibiotics and specific carbon source additions for bioproduct (1-butanol) synthesis in Escherichia coli. Metabolic Engineering Communications, 2015, 2, 6-12.	1.9	2
105	Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae. Process Biochemistry, 2015, 50, 173-179.	1.8	50
106	In situ recovery of fumaric acid by intermittent adsorption with IRA-900 ion exchange resin for enhanced fumaric acid production by Rhizopus oryzae. Biochemical Engineering Journal, 2015, 96, 38-45.	1.8	29
107	Economic conversion of spirit-based distillers' grain to 2,3-butanediol by Bacillus amyloliquefaciens. Process Biochemistry, 2015, 50, 20-23.	1.8	20
108	Regulating Pyruvate Carboxylase in the Living Culture of Aspergillus Terreus Nrrl 1960 by l-Aspartate for Enhanced Itaconic Acid Production. Applied Biochemistry and Biotechnology, 2015, 177, 595-609.	1.4	13

#	Article	IF	CITATIONS
109	Two-step production of gamma-aminobutyric acid from cassava powder using <i>Corynebacterium glutamicum</i> and <i>Lactobacillus plantarum</i> . Journal of Industrial Microbiology and Biotechnology, 2015, 42, 1157-1165.	1.4	24
110	Cloning and identification of a novel tyrosinase and its overexpression in Streptomyces kathirae SC-1 for enhancing melanin production. FEMS Microbiology Letters, 2015, 362, fnv041.	0.7	22
111	Metabolic engineering of <i>Clostridium tyrobutyricum</i> for nâ€butanol production through coâ€utilization of glucose and xylose. Biotechnology and Bioengineering, 2015, 112, 2134-2141.	1.7	82
112	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase. Applied Microbiology and Biotechnology, 2015, 99, 4917-4930.	1.7	42
113	Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Biotechnology for Biofuels, 2015, 8, 129.	6.2	32
114	Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metabolic Engineering, 2015, 32, 39-48.	3.6	118
115	Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microbial Cell Factories, 2015, 14, 122.	1.9	47
116	Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation. Enzyme and Microbial Technology, 2015, 77, 54-60.	1.6	25
117	Effect of pH on Fumaric Acid Adsorption onto IRA900 Ion Exchange Resin. Separation Science and Technology, 2015, 50, 56-63.	1.3	16
118	Bioconversion of cholesterol to 4â€cholestenâ€3â€one by recombinant <i>Bacillus subtilis</i> expressing <i><scp>choM</scp></i> gene encoding cholesterol oxidase from <i>Mycobacterium neoaurum</i> <scp>JC</scp> â€12. Journal of Chemical Technology and Biotechnology, 2015, 90, 1811-1820.	1.6	16
119	Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae. Biochemical Engineering Journal, 2015, 94, 92-99.	1.8	44
120	Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. Journal of Biotechnology, 2015, 193, 108-119.	1.9	29
121	Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Applied Microbiology and Biotechnology, 2015, 99, 1011-1022.	1.7	117
122	Metabolic process engineering of <i>Clostridium tyrobutyricum</i> Δ <i>ack</i> – <i>adhE2</i> for enhanced nâ€butanol production from glucose: Effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnology and Bioengineering, 2015, 112, 705-715.	1.7	63
123	High cell density propionic acid fermentation with an acid tolerant strain of <i>Propionibacterium acidipropionici</i> . Biotechnology and Bioengineering, 2015, 112, 502-511.	1.7	32
124	Effects of carbon dioxide on cell growth and propionic acid production from glycerol and glucose by Propionibacterium acidipropionici. Bioresource Technology, 2015, 175, 374-381.	4.8	30
125	Engineering Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: Effects of overexpressing propionyl-CoA:Succinate CoA transferase. Metabolic Engineering, 2015, 27, 46-56.	3.6	54
126	Curculigoside Improves Osteogenesis of Human Amniotic Fluid-Derived Stem Cells. Stem Cells and Development, 2014, 23, 146-154.	1.1	20

#	Article	IF	CITATIONS
127	Butanol Production from Soybean Hull and Soy Molasses by Acetone-Butanol-Ethanol Fermentation. ACS Symposium Series, 2014, , 25-41.	0.5	13
128	Stem cell engineering in bioreactors for largeâ€scale bioprocessing. Engineering in Life Sciences, 2014, 14, 4-15.	2.0	56
129	Integrated butanol recovery for an advanced biofuel: current state and prospects. Applied Microbiology and Biotechnology, 2014, 98, 3463-3474.	1.7	134
130	Expansion of embryonic stem cells in suspension and fibrous bed bioreactors. Journal of Biotechnology, 2014, 178, 54-64.	1.9	6
131	Characterization of gas stripping and its integration with acetone–butanol–ethanol fermentation for high-efficient butanol production and recovery. Biochemical Engineering Journal, 2014, 83, 55-61.	1.8	83
132	Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum. Green Chemistry, 2014, 16, 4190-4197.	4.6	31
133	Hypolipidemic Activity of Okra is Mediated Through Inhibition of Lipogenesis and Upregulation of Cholesterol Degradation. Phytotherapy Research, 2014, 28, 268-273.	2.8	27
134	Fumaric Acid Recovery and Purification from Fermentation Broth by Activated Carbon Adsorption Followed with Desorption by Acetone. Industrial & Engineering Chemistry Research, 2014, 53, 12802-12808.	1.8	30
135	Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Current Opinion in Chemical Engineering, 2014, 6, 43-54.	3.8	63
136	Metabolic engineering of Propionibacterium freudenreichii: effect of expressing phosphoenolpyruvate carboxylase on propionic acid production. Applied Microbiology and Biotechnology, 2014, 98, 7761-7772.	1.7	40
137	Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations. Bioresource Technology, 2014, 163, 172-179.	4.8	72
138	Expansion of human amniotic fluid stem cells in 3-dimensional fibrous scaffolds in a stirred bioreactor. Biochemical Engineering Journal, 2014, 82, 71-80.	1.8	10
139	The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metabolic Engineering, 2014, 23, 34-41.	3.6	98
140	Efficient Whole-Cell Biocatalyst for Acetoin Production with NAD+ Regeneration System through Homologous Co-Expression of 2,3-Butanediol Dehydrogenase and NADH Oxidase in Engineered Bacillus subtilis. PLoS ONE, 2014, 9, e102951.	1.1	48
141	A carbon nanotube filled polydimethylsiloxane hybrid membrane for enhanced butanol recovery. Scientific Reports, 2014, 4, 5925.	1.6	67
142	Two-Stage pH Control Strategy Based on the pH Preference of Acetoin Reductase Regulates Acetoin and 2,3-Butanediol Distribution in Bacillus subtilis. PLoS ONE, 2014, 9, e91187.	1.1	30
143	Production of β-Glucosidase by Aspergillus niger on Wheat Bran and Glycerol in Submerged Culture: Factorial Experimental Design and Process Optimization. Current Biotechnology, 2014, 3, 197-206.	0.2	11
144	Metabolic Process Engineering for Biochemicals and Biofuels Production. Journal of Microbial & Biochemical Technology, 2014, 06, .	0.2	2

#	Article	IF	CITATIONS
145	Dendritic cells derived from pluripotent stem cells: Potential of large scale production. World Journal of Stem Cells, 2014, 6, 1.	1.3	19
146	Neural differentiation from pluripotent stem cells: The role of natural and synthetic extracellular matrix. World Journal of Stem Cells, 2014, 6, 11.	1.3	56
147	Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor. Bioresource Technology, 2013, 133, 175-182.	4.8	64
148	Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresource Technology, 2013, 137, 116-123.	4.8	103
149	Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production. Applied Microbiology and Biotechnology, 2013, 97, 7651-7658.	1.7	46
150	Microwell bioreactor system for cell-based high throughput proliferation and cytotoxicity assays. Process Biochemistry, 2013, 48, 78-88.	1.8	8
151	Butanol production from wood pulping hydrolysate in an integrated fermentation–gas stripping process. Bioresource Technology, 2013, 143, 467-475.	4.8	126
152	Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery. Bioresource Technology, 2013, 135, 396-402.	4.8	147
153	Threeâ€dimensional neural differentiation of embryonic stem cells with ACM induction in microfibrous matrices in bioreactors. Biotechnology Progress, 2013, 29, 1013-1022.	1.3	9
154	Multiwalled carbon nanotube-coated polyethylene terephthalate fibrous matrices for enhanced neuronal differentiation of mouse embryonic stem cells. Journal of Materials Chemistry B, 2013, 1, 646-653.	2.9	22
155	Cell-based high-throughput proliferation and cytotoxicity assays for screening traditional Chinese herbal medicines. Process Biochemistry, 2013, 48, 517-524.	1.8	16
156	Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresource Technology, 2013, 143, 397-404.	4.8	68
157	Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresource Technology, 2013, 129, 553-560.	4.8	100
158	Production of polymalic acid and malic acid by <i>Aureobasidium pullulans</i> fermentation and acid hydrolysis. Biotechnology and Bioengineering, 2013, 110, 2105-2113.	1.7	94
159	Cellâ€based screening of traditional chinese medicines for proliferation enhancers of mouse embryonic stem cells. Biotechnology Progress, 2013, 29, 738-744.	1.3	12
160	Metabolic engineering of Propionibacterium freudenreichii for n-propanol production. Applied Microbiology and Biotechnology, 2013, 97, 4677-4690.	1.7	33
161	Effects of corn steep liquor on production of 2,3-butanediol and acetoin by Bacillus subtilis. Process Biochemistry, 2013, 48, 1610-1617.	1.8	31
162	Microfibrous carriers for integrated expansion and neural differentiation of embryonic stem cells in suspension bioreactor. Biochemical Engineering Journal, 2013, 75, 55-63.	1.8	11

#	Article	IF	CITATIONS
163	Cell culture processes for biologics manufacturing: recent developments and trends. Pharmaceutical Bioprocessing, 2013, 1, 133-136.	0.8	9
164	Improved Production of 2,3-Butanediol in Bacillus amyloliquefaciens by Over-Expression of Glyceraldehyde-3-Phosphate Dehydrogenase and 2,3-butanediol Dehydrogenase. PLoS ONE, 2013, 8, e76149.	1.1	46
165	Engineering stem cell niches in bioreactors. World Journal of Stem Cells, 2013, 5, 124.	1.3	34
166	Metabolic engineering of Rhizopus oryzae: Effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. Metabolic Engineering, 2012, 14, 512-520.	3.6	70
167	Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RSC Advances, 2012, 2, 10110.	1.7	122
168	Beneficial effect of protracted sterilization of lentils on phytase production by <i>Aspergillus ficuum</i> in solid state fermentation. Biotechnology Progress, 2012, 28, 1263-1270.	1.3	5
169	Metabolic engineering of Rhizopus oryzae: Effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose. Process Biochemistry, 2012, 47, 2159-2165.	1.8	27
170	Bioethanol from fermentation of cassava pulp in a fibrous-bed bioreactor using immobilized Δldh, a genetically engineered Thermoanaerobacterium aotearoense. Biotechnology and Bioprocess Engineering, 2012, 17, 1270-1277.	1.4	5
171	Fatty Acids Profiling and Biomarker Identification in Snow Alga <i>Chlamydomonas Nivalis</i> by NaCl Stress Using GC/MS and Multivariate Statistical Analysis. Analytical Letters, 2012, 45, 1172-1183.	1.0	22
172	Medium to High Throughput Screening: Microfabrication and Chip-Based Technology. Advances in Experimental Medicine and Biology, 2012, 745, 181-209.	0.8	8
173	Highâ€ŧiter <i>n</i> â€butanol production by <i>clostridium acetobutylicum</i> JB200 in fedâ€batch fermentation with intermittent gas stripping. Biotechnology and Bioengineering, 2012, 109, 2746-2756.	1.7	191
174	Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrous-bed bioreactor. Bioprocess and Biosystems Engineering, 2012, 35, 915-921.	1.7	80
175	Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technology, 2012, 104, 380-387.	4.8	230
176	A 24-microwell plate with improved mixing and scalable performance for high throughput cell cultures. Process Biochemistry, 2012, 47, 612-618.	1.8	19
177	Lipidomic profiling and discovery of lipid biomarkers in snow alga Chlamydomonas nivalis under salt stress. European Journal of Lipid Science and Technology, 2012, 114, 253-265.	1.0	61
178	Effects of <i>ptb</i> knockout on butyric acid fermentation by <i>Clostridium tyrobutyricum</i> . Biotechnology Progress, 2012, 28, 52-59.	1.3	39
179	Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Applied Microbiology and Biotechnology, 2012, 93, 881-889.	1.7	75
180	Perspectives on Carbon Nanotube-Based Scaffolds in Nerve Tissue Engineering. Journal of Tissue Science & Engineering, 2012, 03, .	0.2	2

#	Article	IF	CITATIONS
181	Optimum Extraction of Flavonoids from Broccolini Leaves Using Response Surface Methodology. Solvent Extraction Research and Development, 2011, 18, 171-179.	0.5	2
182	An online, non-invasive fluorescence probe for immobilized cell culture process development. Process Biochemistry, 2011, 46, 2030-2035.	1.8	7
183	Production of 2,3â€butanediol from glucose by GRAS microorganism <i>Bacillus amyloliquefaciens</i> . Journal of Basic Microbiology, 2011, 51, 650-658.	1.8	67
184	Microfibrous carriers for cell culture: A comparative study. Biotechnology Progress, 2011, 27, 1126-1136.	1.3	4
185	Enhanced butyric acid tolerance and bioproduction by <i>Clostridium tyrobutyricum</i> immobilized in a fibrous bed bioreactor. Biotechnology and Bioengineering, 2011, 108, 31-40.	1.7	126
186	Cell surface display of carbonic anhydrase on <i>Escherichia coli</i> using ice nucleation protein for CO ₂ sequestration. Biotechnology and Bioengineering, 2011, 108, 2853-2864.	1.7	56
187	Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresource Technology, 2011, 102, 3923-3926.	4.8	93
188	High-throughput 3-D cell-based proliferation and cytotoxicity assays for drug screening and bioprocess development. Journal of Biotechnology, 2011, 151, 186-193.	1.9	39
189	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metabolic Engineering, 2011, 13, 373-382.	3.6	190
190	Centrifugal seeding of mammalian cells in nonwoven fibrous matrices. Biotechnology Progress, 2010, 26, 239-245.	1.3	14
191	Effects of fibrous matrix on flow startup and control in parallel PDMS microchannels with a common inlet. Microfluidics and Nanofluidics, 2010, 9, 375-384.	1.0	2
192	Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis. Bioprocess and Biosystems Engineering, 2010, 33, 407-416.	1.7	56
193	Microplateâ€reader compatible perfusion microbioreactor array for modular tissue culture and cytotoxicity assays. Biotechnology Progress, 2010, 26, 1135-1144.	1.3	20
194	A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae. Bioresource Technology, 2010, 101, 5557-5564.	4.8	44
195	Three-dimensional culture of human mesenchymal stem cells in a polyethylene terephthalate matrix. Biomedical Materials (Bristol), 2010, 5, 065013.	1.7	19
196	Tissue Engineering: Stem Cell-Based. , 2010, , 1740-1743.		0
197	Engineering <i>Propionibacterium acidipropionici</i> for enhanced propionic acid tolerance and fermentation. Biotechnology and Bioengineering, 2009, 104, 766-773.	1.7	92
198	Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1383-1389.	1.4	94

#	Article	IF	CITATIONS
199	Long-term production of soluble human Fas ligand through immobilization of Dictyostelium discoideum in a fibrous bed bioreactor. Applied Microbiology and Biotechnology, 2009, 82, 241-248.	1.7	7
200	Modifications of nonwoven polyethylene terephthalate fibrous matrices via NaOH hydrolysis: Effects on pore size, fiber diameter, cell seeding and proliferation. Process Biochemistry, 2009, 44, 992-998.	1.8	45
201	Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochemistry, 2009, 44, 1346-1351.	1.8	129
202	Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: Evidence for the phosphotransferase transport system. Bioresource Technology, 2009, 101, 304-9.	4.8	21
203	Effects of Three-Dimensional Culturing in a Fibrous Matrix on Cell Cycle, Apoptosis, and MAb Production by Hybridoma Cells. Biotechnology Progress, 2008, 20, 306-315.	1.3	32
204	Construction and Characterization of ack Deleted Mutant of Clostridium tyrobutyricum for Enhanced Butyric Acid and Hydrogen Production. Biotechnology Progress, 2008, 22, 1265-1275.	1.3	156
205	A two-stage perfusion fibrous bed bioreactor system for mass production of embryonic stem cells. Expert Opinion on Biological Therapy, 2008, 8, 895-909.	1.4	24
206	The future of microfluidic assays in drug development. Expert Opinion on Drug Discovery, 2008, 3, 1237-1253.	2.5	32
207	Microbioreactors for high-throughput cytotoxicity assays. Current Opinion in Drug Discovery & Development, 2008, 11, 111-27.	1.9	18
208	Solid State Fermentation and Its Applications. , 2007, , 465-489.		26
209	Bioprocessing – from Biotechnology to Biorefinery. , 2007, , 1-24.		24
210	Metabolic Engineering $\hat{a} \in $ Applications, Methods, and Challenges. , 2007, , 73-118.		15
211	Extractive Fermentation for the Production of Carboxylic Acids. , 2007, , 421-446.		26
212	Effects of mixing intensity on cell seeding and proliferation in three-dimensional fibrous matrices. Biotechnology and Bioengineering, 2007, 96, 371-380.	1.7	18
213	Enzyme-linked immunosorbent assay ofEscherichia coli O157:H7 in surface enhanced poly(methyl) Tj ETQq1 1	0.784314 1.7	rgBŢ /Overloc
214	Production of mycophenolic acid by Penicillium brevicompactum immobilized in a rotating fibrous-bed bioreactor. Enzyme and Microbial Technology, 2007, 40, 623-628.	1.6	37
215	Production and separation of formate dehydrogenase from Candida boidinii. Enzyme and Microbial Technology, 2007, 40, 940-946.	1.6	5
216	A new dimension to biomaterials. Materials Today, 2007, 10, 64.	8.3	4

#	Article	IF	CITATIONS
217	Long-Term Culturing of Undifferentiated Embryonic Stem Cells in Conditioned Media and Three-Dimensional Fibrous Matrices Without Extracellular Matrix Coating. Stem Cells, 2007, 25, 447-454.	1.4	73
218	Affinity chromatographic separation of secreted alkaline phosphatase and glucoamylase using reactive dyes. Process Biochemistry, 2007, 42, 561-569.	1.8	7
219	Surface Modification for Enhancing Antibody Binding on Polymer-Based Microfluidic Device for Enzyme-Linked Immunosorbent Assay. Langmuir, 2006, 22, 9458-9467.	1.6	141
220	Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme and Microbial Technology, 2006, 38, 521-528.	1.6	117
221	Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochemistry, 2006, 41, 801-808.	1.8	68
222	Construction and characterization ofack knock-out mutants ofPropionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnology and Bioengineering, 2006, 94, 383-395.	1.7	75
223	Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Biomaterials, 2005, 26, 2585-2594.	5.7	68
224	Production of GFP and Glucoamylase by Recombinant Aspergillus niger: Effects of Fermentation Conditions on Fungal Morphology and Protein Secretion. Biotechnology Progress, 2005, 21, 1389-1400.	1.3	33
225	Construction and characterization ofpta gene-deleted mutant ofClostridium tyrobutyricum for enhanced butyric acid fermentation. Biotechnology and Bioengineering, 2005, 90, 154-166.	1.7	97
226	Enhanced propionic acid fermentation byPropionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnology and Bioengineering, 2005, 91, 325-337.	1.7	139
227	Biotransformation ofR-2-hydroxy-4-phenylbutyric acid byD-lactate dehydrogenase andCandida boidinii cells containing formate dehydrogenase coimmobilized in a fibrous bed bioreactor. Biotechnology and Bioengineering, 2005, 92, 137-146.	1.7	21
228	Astrocyte Growth and Glial Cell Line-Derived Neurotrophic Factor Secretion in Three-Dimensional Polyethylene Terephthalate Fibrous Matrices. Tissue Engineering, 2005, 11, 940-952.	4.9	21
229	A Hollow-Fiber Membrane Extraction Process for Recovery and Separation of Lactic Acid from Aqueous Solution. Applied Biochemistry and Biotechnology, 2004, 114, 671-688.	1.4	35
230	Continuous Production of Butanol by <i>Clostridium acetobutylicum </i> Immobilized in a Fibrous Bed Bioreactor. Applied Biochemistry and Biotechnology, 2004, 115, 0887-0898.	1.4	162
231	Long-term Continuous Production of Monoclonal Antibody by Hybridoma Cells Immobilized in a Fibrous-Bed Bioreactor. Cytotechnology, 2004, 44, 1-14.	0.7	21
232	A Fibrous-Bed Bioreactor for Continuous Production of Monoclonal Antibody by Hybridoma. Advances in Biochemical Engineering/Biotechnology, 2004, 87, 61-96.	0.6	22
233	Design of a Compact Disk-like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay. Analytical Chemistry, 2004, 76, 1832-1837.	3.2	395
234	Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology, 2004, 110, 143-157.	1.9	214

#	Article	IF	CITATIONS
235	Continuous Production of Butanol by Clostridium acetobutylicum Immobilized in a Fibrous Bed Bioreactor. , 2004, , 887-898.		4
236	A Hollow-Fiber Membrane Extraction Process for Recovery and Separation of Lactic Acid from Aqueous Solution. , 2004, , 671-688.		1
237	Culturing and differentiation of murine embryonic stem cells in a three-dimensional fibrous matrix. Cytotechnology, 2003, 41, 23-35.	0.7	39
238	Extractive fermentation for butyric acid production from glucose byClostridium tyrobutyricum. Biotechnology and Bioengineering, 2003, 82, 93-102.	1.7	149
239	Adaptation of Clostridium tyrobutyricum for Enhanced Tolerance to Butyric Acid in a Fibrous-Bed Bioreactor. Biotechnology Progress, 2003, 19, 365-372.	1.3	82
240	Effects of Three-Dimensional Culturing on Osteosarcoma Cells Grown in a Fibrous Matrix: Analyses of Cell Morphology, Cell Cycle, and Apoptosis. Biotechnology Progress, 2003, 19, 1574-1582.	1.3	23
241	Controlling Filamentous Fungal Morphology by Immobilization on a Rotating Fibrous Matrix to Enhance Oxygen Transfer and L(+)-Lactic Acid Production by Rhizopus oryzae. ACS Symposium Series, 2003, , 36-51.	0.5	20
242	Enhancing Butyric Acid Production with Mutants of Clostridium tyrobutyricum Obtained from Metabolic Engineering and Adaptation in a Fibrous-Bed Bioreactor. ACS Symposium Series, 2003, , 52-66.	0.5	0
243	A fibrous-bed bioreactor for continuous production of developmental endothelial locus-1 by osteosarcoma cells. Journal of Biotechnology, 2002, 97, 23-39.	1.9	22
244	A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens. Journal of Environmental Management, 2002, 7, 203-216.	1.7	95
245	BTEX removal from contaminated groundwater by a co-culture ofPseudomonas putida andPseudomonas fluorescens immobilized in a continuous fibrous-bed bioreactor. Journal of Chemical Technology and Biotechnology, 2002, 77, 1308-1315.	1.6	10
246	Lecithin-enhanced biotransformation of cholesterol to androsta-1,4-diene-3,17-dione and androsta-4-ene-3,17-dione. Journal of Chemical Technology and Biotechnology, 2002, 77, 1349-1357.	1.6	27
247	Production ofL(+)-lactic acid from glucose and starch by immobilized cells ofRhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnology and Bioengineering, 2002, 80, 1-12.	1.7	155
248	Production of galacto-oligosaccharides from lactose byAspergillus oryzae ?-galactosidase immobilized on cotton cloth. Biotechnology and Bioengineering, 2002, 77, 8-19.	1.7	178
249	Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresource Technology, 2002, 82, 51-59.	4.8	142
250	Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochemistry, 2002, 38, 657-666.	1.8	108
251	Immobilization of Aspergillus oryzae β-galactosidase on tosylated cotton cloth. Enzyme and Microbial Technology, 2002, 31, 371-383.	1.6	75
252	Immobilization of β-Galactosidase on Fibrous Matrix by Polyethyleneimine for Production of Galacto-Oligosaccharides from Lactose. Biotechnology Progress, 2002, 18, 240-251.	1.3	82

#	Article	IF	CITATIONS
253	Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnology and Bioengineering, 2002, 77, 8.	1.7	3
254	Production of Galacto-Oligosaccharides from Lactose by Immobilized β-Galactosidase. ACS Symposium Series, 2001, , 131-154.	0.5	6
255	Effects of three-dimensional scaffolds on cell organization and tissue development. Biotechnology and Bioprocess Engineering, 2001, 6, 311-325.	1.4	56
256	Thermal compression and characterization of three-dimensional nonwoven PET matrices as tissue engineering scaffolds. Biomaterials, 2001, 22, 609-618.	5.7	87
257	Effects of Filtration Seeding on Cell Density, Spatial Distribution, and Proliferation in Nonwoven Fibrous Matrices. Biotechnology Progress, 2001, 17, 935-944.	1.3	163
258	Oxygen Tension Influences Proliferation and Differentiation in a Tissue-Engineered Model of Placental Trophoblast-Like Cells. Tissue Engineering, 2001, 7, 495-506.	4.9	29
259	Human Cord Cell Hematopoiesis in Three-Dimensional Nonwoven Fibrous Matrices: In Vitro Simulation of the Marrow Microenvironment. Journal of Hematotherapy and Stem Cell Research, 2001, 10, 355-368.	1.8	91
260	Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development. Biotechnology and Bioengineering, 2000, 70, 606-618.	1.7	99
261	Acetic Acid Production from Lactose by an Anaerobic Thermophilic Coculture Immobilized in a Fibrous-Bed Bioreactor. Biotechnology Progress, 2000, 16, 1008-1017.	1.3	51
262	Development of an in Vitro Human Placenta Model by the Cultivation of Human Trophoblasts in a Fiber-Based Bioreactor System. Tissue Engineering, 1999, 5, 91-102.	4.9	34
263	Tissue Engineering Human Placenta Trophoblast Cells in 3-D Fibrous Matrix: Spatial Effects on Cell Proliferation and Function. Biotechnology Progress, 1999, 15, 715-724.	1.3	54
264	Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. Journal of Biotechnology, 1999, 67, 99-112.	1.9	136
265	Production of Cell-Free Xanthan Fermentation Broth by Cell Adsorption on Fibers. Biotechnology Progress, 1998, 14, 259-264.	1.3	28
266	Extractive Fermentation for Enhanced Propionic Acid Production from Lactose by Propionibacterium acidipropionici. Biotechnology Progress, 1998, 14, 457-465.	1.3	119
267	Production of Amylases from Rice by Solid-State Fermentation in a Gas-Solid Spouted-Bed Bioreactor. Biotechnology Progress, 1998, 14, 580-587.	1.3	16
268	Acetic Acid Production from Fructose by Clostridium formicoaceticum Immobilized in a Fibrous-Bed Bioreactor. Biotechnology Progress, 1998, 14, 800-806.	1.3	58
269	Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor. , 1998, 60, 498-507.		81
270	A trickling fibrous-bed bioreactor for biofiltration of benzene in air. Journal of Chemical Technology and Biotechnology, 1998, 73, 359-368.	1.6	18

#	Article	IF	CITATIONS
271	Effects of yeast extract and glucose on xanthan production and cell growth in batch culture of Xanthomonas campestris. Applied Microbiology and Biotechnology, 1997, 47, 689-694.	1.7	43
272	Ultrafiltration of xanthan gum fermentation broth: Process and economic analyses. Journal of Food Engineering, 1997, 31, 219-236.	2.7	31
273	Kinetics and modeling of CM-CSF production by recombinant yeast in a three-phase fluidized bed bioreactor. , 1997, 53, 470-477.		11
274	A novel feeding strategy for enhanced plasmid stability and protein production in recombinant yeast fedbatch fermentation. , 1997, 56, 23-31.		40
275	Kinetics of continuous GM-CSF production by recombinant Saccharomyces cerevisiae in an airlift bioreactor. Journal of Biotechnology, 1996, 48, 107-116.	1.9	9
276	Dynamics and modeling of temperature-regulated gene product expression in recombinant yeast fermentation. , 1996, 50, 663-674.		8
277	Effect of particle loading on GM-CSF production bySaccharomyces cerevisiae in a three-phase fluidized bed bioreactor. , 1996, 51, 229-236.		10
278	Kinetic and feasibility studies of ultrafiltration of viscous xanthan gum fermentation broth. Journal of Membrane Science, 1996, 117, 237-249.	4.1	34
279	Kinetics and Stability of GM-CSF Production by Recombinant Yeast Cells Immobilized in a Fibrous-Bed Bioreactor. Biotechnology Progress, 1996, 12, 449-456.	1.3	34
280	Xanthan Gum Fermentation by Xanthomonas campestris Immobilized in a Novel Centrifugal Fibrous-Bed Bioreactor. Biotechnology Progress, 1996, 12, 630-637.	1.3	51
281	A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose. Biotechnology and Bioengineering, 1995, 45, 379-386.	1.7	65
282	Kinetics and stability of a fibrous-bed bioreactor for continuous production of lactic acid from unsupplemented acid whey. Journal of Biotechnology, 1995, 41, 59-70.	1.9	93
283	Continuous propionate production from whey permeate using a novel fibrous bed bioreactor. Biotechnology and Bioengineering, 1994, 43, 1124-1130.	1.7	107
284	A Dynamic Light Scattering Study of .betaGalactosidase: Environmental Effects on Protein Conformation and Enzyme Activity. Biotechnology Progress, 1994, 10, 525-531.	1.3	36
285	Propionic acid fermentation by Propionibacterium acidipropionici: effect of growth substrate. Applied Microbiology and Biotechnology, 1992, 37, 437.	1.7	44
286	Calcium magnesium acetate (CMA) production from whey permeate: process and economic analysis. Resources, Conservation and Recycling, 1992, 7, 181-200.	5.3	18
287	A novel fermentation process for calcium magnesium acetate (CMA) production from cheese whey. Applied Biochemistry and Biotechnology, 1992, 34-35, 569-583.	1.4	28
288	A novel extractive fermentation process for propionic acid production from whey lactose. Biotechnology Progress, 1992, 8, 104-110.	1.3	69

#	Article	IF	CITATIONS
289	Continuous propionic acid fermentation by immobilizedPropionibacterium acidipropionici in a novel packed-bed bioreactor. Biotechnology and Bioengineering, 1992, 40, 465-474.	1.7	77
290	A kinetic model for methanogenesis from whey permeate in a packed bed immobilized cell bioreactor. Biotechnology and Bioengineering, 1991, 37, 375-382.	1.7	9
291	Kinetics and modeling of temperature effects on batch xanthan gum fermentation. Biotechnology and Bioengineering, 1991, 37, 567-574.	1.7	24
292	Propionic acid fermentation of lactose byPropionibacterium acidipropionici: Effects of pH. Biotechnology and Bioengineering, 1991, 38, 571-578.	1.7	116
293	Methanogenesis from lactate by a co-culture of Clostridium formicoaceticum and Methanosarcina mazei. Applied Microbiology and Biotechnology, 1991, 35, 119.	1.7	16
294	Effects of temperature on cell growth and xanthan production in batch cultures ofXanthomonas campestris. Biotechnology and Bioengineering, 1990, 35, 454-468.	1.7	90
295	Kinetics of methanogenesis from whey permeate in packed bed immobilized cells bioreactor. Biotechnology and Bioengineering, 1990, 36, 427-436.	1.7	14
296	Effects of temperature on lactose hydrolysis by immobilized β-galactosidase in plug-flow reactor. Biotechnology and Bioengineering, 1989, 33, 873-885.	1.7	44
297	A new graphical method for determining parameters in Michaelis-Menten-type kinetics for enzymatic lactose hydrolysis. Biotechnology and Bioengineering, 1989, 34, 763-773.	1.7	24
298	Effects of pH and acetic acid on homoacetic fermentation of lactate byClostridium formicoaceticum. Biotechnology and Bioengineering, 1989, 34, 1063-1074.	1.7	60
299	Defined bacterial culture development for methane generation from lactose. Biotechnology and Bioengineering, 1988, 32, 28-37.	1.7	9
300	Acetic acid production from whey lactose by the co-culture ofStreptococcus lactis andClostridium formicoaceticum. Applied Microbiology and Biotechnology, 1988, 28, 138-143.	1.7	30
301	Kinetics of Homoacetic Fermentation of Lactate by <i>Clostridium formicoaceticum</i> . Applied and Environmental Microbiology, 1987, 53, 823-827.	1.4	21