
Maria J Barrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5262983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutritional Epigenetics in Cancer. Advances in Nutrition, 2022, 13, 1748-1761.	6.4	7
2	Targeting YY1 in cancer through histone acetylation. , 2021, , 211-223.		0
3	Epigenetic Regulation of the Non-Coding Genome: Opportunities for Immuno-Oncology. Epigenomes, 2020, 4, 22.	1.8	6
4	Tissue and cancer-specific expression of DIEXF is epigenetically mediated by an Alu repeat. Epigenetics, 2020, 15, 765-779.	2.7	4
5	CREBBP/EP300 Bromodomain Inhibition Affects the Proliferation of AR-Positive Breast Cancer Cell Lines. Molecular Cancer Research, 2019, 17, 720-730.	3.4	24
6	CREBBP/EP300 bromodomains are critical to sustain the GATA1/MYC regulatory axis in proliferation. Epigenetics and Chromatin, 2018, 11, 30.	3.9	43
7	Epigenetic Strategies to Boost Cancer Immunotherapies. International Journal of Molecular Sciences, 2017, 18, 1108.	4.1	29
8	SETD7 Regulates the Differentiation of Human Embryonic Stem Cells. PLoS ONE, 2016, 11, e0149502.	2.5	18
9	NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Scientific Reports, 2016, 6, 32952.	3.3	45
10	Macrohistone Variants Preserve Cell Identity by Preventing the Gain of H3K4me2 during Reprogramming to Pluripotency. Cell Reports, 2013, 3, 1005-1011.	6.4	72
11	Mcad-mediated intercellular interactions activate satellite cell division. Journal of Cell Science, 2013, 126, 5116-31.	2.0	15
12	The RNA Polymerase II Transcriptional Machinery and Its Epigenetic Context. Sub-Cellular Biochemistry, 2013, 61, 237-259.	2.4	3
13	Polycomb complex recruitment in pluripotent stem cells. Nature Cell Biology, 2013, 15, 348-350.	10.3	27
14	Macro Histone Variants Are Critical for the Differentiation of Human Pluripotent Cells. Journal of Biological Chemistry, 2013, 288, 16110-16116.	3.4	42
15	SMYD2 is induced during cell differentiation and participates in early development. International Journal of Developmental Biology, 2013, 57, 357-364.	0.6	29
16	M-cadherin-mediated intercellular interactions activate satellite cell division. Development (Cambridge), 2013, 140, e2407-e2407.	2.5	0
17	The Stability of the Induced Epigenetic Programs. Comparative and Functional Genomics, 2012, 2012, 1-9.	2.0	3
18	Mediator-Regulated Transcription through theÂ+1 Nucleosome. Molecular Cell, 2012, 48, 837-848.	9.7	47

MARIA J BARRERO

#	Article	IF	CITATIONS
19	DNA Hypermethylation in Somatic Cells Correlates with Higher Reprogramming Efficiency. Stem Cells, 2012, 30, 1696-1702.	3.2	17
20	Dynamic Changes in the Copy Number of Pluripotency and Cell Proliferation Genes in Human ESCs and iPSCs during Reprogramming and Time in Culture. Cell Stem Cell, 2011, 8, 106-118.	11.1	819
21	iPS cells forgive but do not forget. Nature Cell Biology, 2011, 13, 523-525.	10.3	14
22	LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nature Cell Biology, 2011, 13, 652-659.	10.3	281
23	Regenerating the epigenome. EMBO Reports, 2011, 12, 208-215.	4.5	30
24	LSD1 and pluripotency: A new player in the network. Cell Cycle, 2011, 10, 3215-3216.	2.6	18
25	Histone H1 Variants Are Differentially Expressed and Incorporated into Chromatin during Differentiation and Reprogramming to Pluripotency. Journal of Biological Chemistry, 2011, 286, 35347-35357.	3.4	90
26	Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells under Xeno-free Conditions Â. Stem Cells, 2010, 28, 36-44.	3.2	92
27	Analysis of Human and Mouse Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. What Is in the Plate?. PLoS ONE, 2010, 5, e12664.	2.5	47
28	Epigenetic Mechanisms that Regulate Cell Identity. Cell Stem Cell, 2010, 7, 565-570.	11.1	98
29	Identification of DNA-dependent Protein Kinase as a Cofactor for the Forkhead Transcription Factor FoxA2. Journal of Biological Chemistry, 2009, 284, 19915-19926.	3.4	8
30	Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009, 460, 53-59.	27.8	660
31	Generation of Induced Pluripotent Stem Cells from Human Cord Blood Using OCT4 and SOX2. Cell Stem Cell, 2009, 5, 353-357.	11.1	392
32	Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 2008, 26, 1276-1284.	17.5	1,275
33	Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6182-6187.	7.1	35
34	Two Functional Modes of a Nuclear Receptor-Recruited Arginine Methyltransferase in Transcriptional Activation. Molecular Cell, 2006, 24, 233-243.	9.7	86
35	Thyroid Hormone-Induced Juxtaposition of Regulatory Elements/Factors and Chromatin Remodeling of Crabp1 Dependent on MED1/TRAP220. Molecular Cell, 2005, 19, 643-653.	9.7	66
36	Histone deacetylase inhibitors stimulate mitochondrial HMG-CoA synthase gene expression via a promoter proximal Sp1 site. Nucleic Acids Research, 2003, 31, 1693-1703.	14.5	46

 #	Article	IF	CITATIONS
37	Control of human carnitine palmitoyltransferase II gene transcription by peroxisome proliferator-activated receptor through a partially conserved peroxisome proliferator-responsive element. Biochemical Journal, 2003, 369, 721-729.	3.7	60
38	Low Activity of Mitochondrial HMG-CoA Synthase in Liver of Starved Piglets Is Due to Low Levels of Protein Despite High mRNA Levels. Archives of Biochemistry and Biophysics, 2001, 385, 364-371.	3.0	6
39	Regulation of the Rat Liver Carnitine Palmitoyltransferase I Gene Transcription by Thyroid Hormone. Biochemical and Biophysical Research Communications, 2000, 279, 81-88.	2.1	9