Thomas Flatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5262735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Biology of Aging in Insects: From <i>Drosophila</i> to Other Insects and Back. Annual Review of Entomology, 2022, 67, 83-103.	11.8	14
2	The rapid tempo of adaptation. Science, 2022, 375, 1226-1227.	12.6	1
3	Genomic architecture of supergenes: connecting form and function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	8
4	Mutation accumulation opposes polymorphism: supergenes and the curious case of balanced lethals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	5
5	The discovery, distribution, and diversity of DNA viruses associated with <i>Drosophila melanogaster </i> in Europe. Virus Evolution, 2021, 7, veab031.	4.9	25
6	Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190728.	4.0	47
7	Asymmetry, division of labour and the evolution of ageing in multicellular organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190729.	4.0	14
8	Gene Coexpression Network Reveals Highly Conserved, Well-Regulated Anti-Ageing Mechanisms in Old Ant Queens. Genome Biology and Evolution, 2021, 13, .	2.5	10
9	Allelic polymorphism at <i>foxo</i> contributes to local adaptation in <i>Drosophila melanogaster</i> . Molecular Ecology, 2021, 30, 2817-2830.	3.9	7
10	Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. ELife, 2021, 10, .	6.0	66
11	On the fixation or nonfixation of inversions under epistatic selection. Molecular Ecology, 2021, 30, 3896-3897.	3.9	6
12	<i>Drosophila</i> Evolution over Space and Time (DEST): A New Population Genomics Resource. Molecular Biology and Evolution, 2021, 38, 5782-5805.	8.9	37
13	Transcriptomic evidence for a trade-off between germline proliferation and immunity in <i>Drosophila</i> . Evolution Letters, 2021, 5, 644-656.	3.3	7
14	Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Molecular Biology and Evolution, 2020, 37, 2661-2678.	8.9	104
15	Evolutionary genomics can improve prediction of species' responses to climate change. Evolution Letters, 2020, 4, 4-18.	3.3	190
16	Life-History Evolution and the Genetics of Fitness Components in <i>Drosophila melanogaster</i> . Genetics, 2020, 214, 3-48.	2.9	98
17	Altering the Temporal Regulation of One Transcription Factor Drives Evolutionary Trade-Offs between Head Sensory Organs. Developmental Cell, 2019, 50, 780-792.e7.	7.0	34
18	A clinal polymorphism in the insulin signaling transcription factor <i>foxo</i> contributes to lifeâ€history adaptation in <i>Drosophila</i> *. Evolution; International Journal of Organic Evolution, 2019, 73, 1774-1792.	2.3	28

#	Article	IF	CITATIONS
19	Adaptation to developmental diet influences the response to selection on age at reproduction in the fruit fly. Journal of Evolutionary Biology, 2019, 32, 425-437.	1.7	23
20	Distinct genomic signals of lifespan and life history evolution in response to postponed reproduction and larval diet in <i>Drosophila</i> . Evolution Letters, 2019, 3, 598-609.	3.3	20
21	The adaptive significance of chromosomal inversion polymorphisms in <i>Drosophila melanogaster</i> . Molecular Ecology, 2019, 28, 1263-1282.	3.9	84
22	The diversity of population responses to environmental change. Ecology Letters, 2019, 22, 342-353.	6.4	52
23	How flies turn food into progeny. ELife, 2019, 8, .	6.0	1
24	Aminergic Signaling Controls Ovarian Dormancy in Drosophila. Scientific Reports, 2018, 8, 2030.	3.3	56
25	Evolution of longevity improves immunity in <i>Drosophila</i> . Evolution Letters, 2018, 2, 567-579.	3.3	62
26	Horizons in the evolution of aging. BMC Biology, 2018, 16, 93.	3.8	164
27	An inversion supergene in <i>Drosophila</i> underpins latitudinal clines in survival traits. Journal of Evolutionary Biology, 2018, 31, 1354-1364.	1.7	35
28	The interplay between immunity and aging in Drosophila. F1000Research, 2018, 7, 160.	1.6	52
29	Amino acid modulation of lifespan and reproduction in Drosophila. Current Opinion in Insect Science, 2017, 23, 118-122.	4.4	23
30	Adaptation to fluctuating environments in a selection experiment with <i>Drosophila melanogaster</i> . Ecology and Evolution, 2017, 7, 3796-3807.	1.9	13
31	Ubiquitous overexpression of the DNA repair factor dPrp19 reduces DNA damage and extends Drosophila life span. Npj Aging and Mechanisms of Disease, 2017, 3, 5.	4.5	23
32	Parallel effects of the inversion <i>In(3R)Payne</i> on body size across the North American and Australian clines in <i>Drosophila melanogaster</i> . Journal of Evolutionary Biology, 2016, 29, 1059-1072.	1.7	26
33	Genomics of clinal variation in <i>Drosophila</i> : disentangling the interactions of selection and demography. Molecular Ecology, 2016, 25, 1023-1026.	3.9	31
34	Endocrine uncoupling of the trade-off between reproduction and somatic maintenance in eusocial insects. Current Opinion in Insect Science, 2016, 16, 1-8.	4.4	70
35	Living Long and Well: Prospects for a Personalized Approach to the Medicine of Ageing. Gerontology, 2016, 62, 409-416.	2.8	11
36	Genomic Evidence for Adaptive Inversion Clines in <i>Drosophila melanogaster</i> . Molecular Biology and Evolution, 2016, 33, 1317-1336.	8.9	157

#	Article	IF	CITATIONS
37	Spatially varying selection shapes life history clines among populations of <i>Drosophila melanogaster</i> from sub‣aharan Africa. Journal of Evolutionary Biology, 2015, 28, 826-840.	1.7	51
38	Overexpression of the DNA repair factor SNEVhPrp19/hPso4 extends cellular and organismal life span and increases resistance to genotoxic stress. Experimental Gerontology, 2015, 68, 96.	2.8	0
39	Paying the costs of reproduction. ELife, 2015, 4, e09556.	6.0	4
40	Inference of chromosomal inversion dynamics from P ool―S eq data in natural and laboratory populations of D rosophila melanogaster. Molecular Ecology, 2014, 23, 1813-1827.	3.9	101
41	Plasticity of lifespan: a reaction norm perspective. Proceedings of the Nutrition Society, 2014, 73, 532-542.	1.0	19
42	SIMILARITIES AND DIFFERENCES IN ALTITUDINAL VERSUS LATITUDINAL VARIATION FOR MORPHOLOGICAL TRAITS IN <i>DROSOPHILA MELANOGASTER</i> . Evolution; International Journal of Organic Evolution, 2014, 68, 1385-1398.	2.3	58
43	Reproduction, Fat Metabolism, and Life Span: What Is the Connection?. Cell Metabolism, 2014, 19, 1066.	16.2	5
44	VARIATION IN THERMAL PERFORMANCE AND REACTION NORMS AMONG POPULATIONS OF <i>DROSOPHILA MELANOGASTER </i> . Evolution; International Journal of Organic Evolution, 2013, 67, 3573-3587.	2.3	72
45	Life-History Evolution and the Polyphenic Regulation of Somatic Maintenance and Survival. Quarterly Review of Biology, 2013, 88, 185-218.	0.1	97
46	Reproduction, Fat Metabolism, and Life Span: What Is the Connection?. Cell Metabolism, 2013, 17, 10-19.	16.2	244
47	Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. EMBO Journal, 2013, 32, 1626-1638.	7.8	127
48	Reproductive and postâ€reproductive life history of wildâ€caught <i><scp>D</scp>rosophila melanogaster</i> under laboratory conditions. Journal of Evolutionary Biology, 2013, 26, 1508-1520.	1.7	59
49	Neuronal Inputs and Outputs of Aging and Longevity. Frontiers in Genetics, 2013, 4, 71.	2.3	30
50	The role of the nervous system in aging and longevity. Frontiers in Genetics, 2013, 4, 124.	2.3	13
51	Genomeâ€wide patterns of latitudinal differentiation among populations of <i><scp>D</scp>rosophila melanogaster</i> from <scp>N</scp> orth <scp>A</scp> merica. Molecular Ecology, 2012, 21, 4748-4769.	3.9	256
52	A New Definition of Aging?. Frontiers in Genetics, 2012, 3, 148.	2.3	175
53	Adaptation of <i>Drosophila</i> to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Molecular Ecology, 2012, 21, 4931-4941.	3.9	194
54	The genomic and physiological basis of life history variation in a butterfly metapopulation. Molecular Ecology, 2011, 20, 1795-1798.	3.9	5

#	Article	IF	CITATIONS
55	Survival costs of reproduction in Drosophila. Experimental Gerontology, 2011, 46, 369-375.	2.8	277
56	Steroid hormone regulation of C. elegans and Drosophila aging and life history. Experimental Gerontology, 2011, 46, 141-147.	2.8	50
57	Integrating mechanistic and evolutionary analysis of life history variation. , 2011, , 3-10.		61
58	What mechanistic insights can or cannot contribute to life history evolution: An exchange between Stearns, Heyland, and Flatt. , 2011, , 375-379.		9
59	Transcriptome analysis reveals a major impact of JAK protein tyrosine kinase 2 (Tyk2) on the expression of interferon-responsive and metabolic genes. BMC Genomics, 2010, 11, 199.	2.8	19
60	Host Range and Specificity of the Drosophila C Virus. PLoS ONE, 2010, 5, e12421.	2.5	36
61	Dietary restriction and other lifespan extending pathways converge at the activation of the downstream effector takeout. Aging, 2010, 2, 387-389.	3.1	14
62	Diet and longevity in the balance. Nature, 2009, 462, 989-990.	27.8	23
63	Integrating evolutionary and molecular genetics of aging. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 951-962.	2.4	91
64	Hormonal modulation of larval begging and growth in the burying beetle Nicrophorus vespilloides. Animal Behaviour, 2008, 75, 71-77.	1.9	22
65	<i>Drosophila</i> germ-line modulation of insulin signaling and lifespan. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6368-6373.	7.1	260
66	Hormonal regulation of the humoral innate immune response in <i>Drosophila melanogaster</i> . Journal of Experimental Biology, 2008, 211, 2712-2724.	1.7	216
67	dSir2 and Dmp53 interact to mediate aspects of CR-dependent life span extension in D. melanogaster. Aging, 2008, 1, 38-48.	3.1	87
68	Still Pondering an Age-Old Question. Science, 2007, 318, 1255-1256.	12.6	41
69	Size and shape: the developmental regulation of static allometry in insects. BioEssays, 2007, 29, 536-548.	2.5	304
70	JUVENILE HORMONE AS A REGULATOR OF THE TRADE-OFF BETWEEN REPRODUCTION AND LIFE SPAN INDROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2007, 61, 1980-1991.	2.3	108
71	Counting calories in Drosophila diet restriction. Experimental Gerontology, 2007, 42, 247-251.	2.8	88
72	A role for genetic accommodation in evolution?. BioEssays, 2006, 28, 868-873.	2.5	85

#	Article	IF	CITATIONS
73	Comparing thyroid and insect hormone signaling. Integrative and Comparative Biology, 2006, 46, 777-794.	2.0	51
74	Evolution in group-structured populations can resolve the tragedy of the commons. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1477-1481.	2.6	100
75	What is metamorphosis?. Integrative and Comparative Biology, 2006, 46, 655-661.	2.0	105
76	Winter weather affects asp viper Vipera aspis population dynamics through susceptible juveniles. Oikos, 2005, 110, 55-66.	2.7	19
77	Hormonal pleiotropy and the juvenile hormone regulation ofDrosophila development and life history. BioEssays, 2005, 27, 999-1010.	2.5	422
78	Juvenile and Steroid Hormones in Drosophila melanogaster Longevity. , 2005, , 415-448.		8
79	Winter weather affects asp viper Vipera aspis population dynamics through susceptible juveniles. Oikos, 2005, 110, 55-66.	2.7	53
80	The Evolutionary Genetics of Canalization. Quarterly Review of Biology, 2005, 80, 287-316.	0.1	382
81	Pleiotropic Effects of methoprene-tolerant (Met), a Gene Involved in Juvenile Hormone Metabolism, on Life History Traits in Drosophila melanogaster. Genetica, 2004, 122, 141-160.	1.1	31
82	Stabilizing factors interact in promoting host–parasite coexistence. Journal of Theoretical Biology, 2004, 228, 241-249.	1.7	4
83	The influence of ant-attendance on aphid behaviour investigated with the electrical penetration graph technique. Entomologia Experimentalis Et Applicata, 2002, 102, 13-20.	1.4	8
84	A Bit of Sex Stabilizes Host–Parasite Dynamics. Journal of Theoretical Biology, 2001, 212, 345-354.	1.7	16
85	Phenotypic variation in an oviparous montane lizard (Bassiana duperreyi): the effects of thermal and hydric incubation environments. Biological Journal of the Linnean Society, 2001, 74, 339-350.	1.6	47
86	THE EFFECTS OF MUTUALISTIC ANTS ON APHID LIFE HISTORY TRAITS. Ecology, 2000, 81, 3522-3529.	3.2	125
87	Mark-Recapture Estimates of Survival in Populations of the Asp Viper, Vipera aspis aspis. Journal of Herpetology, 1997, 31, 558.	0.5	20
88	Altering the Temporal Regulation of One Transcription Factor Drives Sensory Trade-Offs. SSRN Electronic Journal, 0, , .	0.4	0