Judith E Deutsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5262731/publications.pdf

Version: 2024-02-01

471509 454955 2,508 37 17 30 citations h-index g-index papers 37 37 37 3094 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Knowledge Translation Research to Promote Behavior Changes in Rehabilitation: Use of Theoretical Frameworks and Tailored Interventions: A Scoping Review. Archives of Physical Medicine and Rehabilitation, 2022, 103, S276-S296.	0.9	16
2	OUP accepted manuscript. Physical Therapy, 2022, , .	2.4	4
3	Can Individuals Poststroke Improve Their Performance in Reaction and Movement Times in a Nonimmersive Serious Game with Practice? A Cross-Sectional Study. Games for Health Journal, 2022, 11, 38-45.	2.0	1
4	Factors influencing the delivery of telerehabilitation for stroke: A systematic review. PLoS ONE, 2022, 17, e0265828.	2.5	22
5	Comparison of neuromuscular and cardiovascular exercise intensity and enjoyment between standard of care, off-the-shelf and custom active video games for promotion of physical activity of persons post-stroke. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 63.	4.6	12
6	Editorial: Virtual Reality for Sensorimotor Rehabilitation of Neurological Health Conditions Across the Lifespan. Frontiers in Neurology, 2021, 12, 766349.	2.4	1
7	A Knowledge Translation Intervention Designed and Implemented by a Knowledge Broker Improved Documented Use of Gait Speed: A Mixed-Methods Study. Journal of Geriatric Physical Therapy, 2020, 43, E1-E10.	1.1	14
8	A knowledge translation intervention designed using audit and feedback and the Theoretical Domains Framework for physical therapists working in inpatient rehabilitation: A case report. Physiotherapy Theory and Practice, 2019, 35, 1-17.	1.3	6
9	Validity and Reliability of the Kinect for Assessment of Standardized Transitional Movements and Balance. Physical Medicine and Rehabilitation Clinics of North America, 2019, 30, 399-422.	1.3	13
10	Playing self-paced video games requires the same energy expenditure but is more enjoyable and less effortful than standard of care activities. , 2019 , , .		2
11	Virtual reality for stroke rehabilitation. The Cochrane Library, 2018, 2018, CD008349.	2.8	566
12	Virtual Reality for Stroke Rehabilitation. Stroke, 2018, 49, .	2.0	37
13	Time since injury limits but does not prevent improvement and maintenance of gains in balance in chronic stroke. Brain Injury, 2018, 32, 303-309.	1.2	10
14	Usability of the â€~Kinect-ing' with Clinicians Website: A Knowledge Translation Resource Supporting Decisions About Active Videogame Use in Rehabilitation. Games for Health Journal, 2018, 7, 362-368.	2.0	5
15	Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation. Pediatric Physical Therapy, 2017, 29, S23-S36.	0.6	54
16	Open Rehab Initiative: Second development iteration. , 2017, , .		1
17	Telehealth and Virtual Reality in Musculoskeletal Practice. , 2017, , 1-20.		O
18	Auditory and visual cueing modulate cycling speed of older adults and persons with Parkinson's disease in a Virtual Cycling (V-Cycle) system. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 77.	4.6	25

#	Article	IF	Citations
19	Validity and usability of a professional association's web-based knowledge translation portal: American Physical Therapy Association's PTNow.org. BMC Medical Informatics and Decision Making, 2015, 15, 79.	3.0	8
20	Recommendations for the Optimal Design of Exergame Interventions for Persons with Disabilities: Challenges, Best Practices, and Future Research. Games for Health Journal, 2015, 4, 58-62.	2.0	65
21	Formative evaluation and preliminary validation of kinect open source stepping game. , 2015, , .		7
22	"Kinect-ing―With Clinicians: A Knowledge Translation Resource to Support Decision Making About Video Game Use in Rehabilitation. Physical Therapy, 2015, 95, 426-440.	2.4	66
23	Energy Expenditure and Exercise Intensity of Interactive Video Gaming in Individuals Poststroke. Neurorehabilitation and Neural Repair, 2014, 28, 56-65.	2.9	66
24	Feasibility of Virtual Reality Augmented Cycling for Health Promotion of People Poststroke. Journal of Neurologic Physical Therapy, 2013, 37, 118-124.	1.4	21
25	Abstract WP317: High Metabolic Cost of Mobility and Balance Activities in Individuals Post-Stroke. Stroke, 2013, 44, .	2.0	0
26	Patient-Centered Integrated Motor Imagery Delivered in the Home With Telerehabilitation to Improve Walking After Stroke. Physical Therapy, 2012, 92, 1065-1077.	2.4	23
27	Virtual Reality for Stroke Rehabilitation. Stroke, 2012, 43, .	2.0	117
28	Virtual Reality for Gait Training: Can It Induce Motor Learning to Enhance Complex Walking and Reduce Fall Risk in Patients With Parkinson's Disease?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 234-240.	3.6	300
29	Nintendo Wii Sports and Wii Fit Game Analysis, Validation, and Application to Stroke Rehabilitation. Topics in Stroke Rehabilitation, 2011, 18, 701-719.	1.9	145
30	Invited Commentary. Physical Therapy, 2011, 91, 875-877.	2.4	3
31	VRACK & amp; #x2014; virtual reality augmented cycling kit: Design and validation., 2010,,.		24
32	Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait and Posture, 2010, 31, 433-437.	1.4	165
33	Use of a Low-Cost, Commercially Available Gaming Console (Wii) for Rehabilitation of an Adolescent With Cerebral Palsy. Physical Therapy, 2008, 88, 1196-1207.	2.4	534
34	Technical and Patient Performance Using a Virtual Reality-Integrated Telerehabilitation System: Preliminary Finding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15, 30-35.	4.9	90
35	Usability of the Remote Console for Virtual Reality Telerehabilitation: Formative Evaluation. Cyberpsychology, Behavior and Social Networking, 2006, 9, 142-147.	2.2	18
36	Standardizing Examination of Outcomes. Journal of Neurologic Physical Therapy, 2004, 28, 57.	1.4	3

JUDITH E DEUTSCH

#	Article	IF	CITATIONS
37	Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke. Restorative Neurology and Neuroscience, 2004, 22, 371-86.	0.7	64