
Howard L Fields

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5262221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical and neuroscience evidence supports the critical importance of patient expectations and agency in opioid tapering. Pain, 2022, 163, 824-826.	4.2	6
2	Optimal opioid treatment requires a consensual approach. Pain, 2022, 163, e689-e690.	4.2	2
3	Pain modulates dopamine neurons via a spinal–parabrachial–mesencephalic circuit. Nature Neuroscience, 2021, 24, 1402-1413.	14.8	52
4	A multicenter, randomized, double-blind, placebo-controlled, comparative study to evaluate the efficacy and safety of newly developed diclofenac patches in patients with cancer pain. Pain, 2021, Publish Ahead of Print, .	4.2	1
5	The prolactin receptor long isoform regulates nociceptor sensitization and opioid-induced hyperalgesia selectively in females. Science Translational Medicine, 2020, 12, .	12.4	46
6	Onset hyperalgesia and offset analgesia: Transient increases or decreases of noxious thermal stimulus intensity robustly modulate subsequent perceived pain intensity. PLoS ONE, 2020, 15, e0231124.	2.5	12
7	A Midbrain Circuit that Mediates Headache Aversiveness in Rats. Cell Reports, 2019, 28, 2739-2747.e4.	6.4	19
8	How expectations influence pain. Pain, 2018, 159, S3-S10.	4.2	91
9	Cortico-Accumbens Regulation of Approach-Avoidance Behavior Is Modified by Experience and Chronic Pain. Cell Reports, 2017, 19, 1522-1531.	6.4	42
10	Two delta opioid receptor subtypes are functional in single ventral tegmental area neurons, and can interact with the mu opioid receptor. Neuropharmacology, 2017, 123, 420-432.	4.1	35
11	Mu Opioid Receptor Actions in the Lateral Habenula. PLoS ONE, 2016, 11, e0159097.	2.5	58
12	Ventral Pallidum Neurons Encode Incentive Value and Promote Cue-Elicited Instrumental Actions. Neuron, 2016, 90, 1165-1173.	8.1	107
13	Mu-opioid receptor activation in the medial shell of nucleus accumbens promotes alcohol consumption, self-administration and cue-induced reinstatement. Neuropharmacology, 2016, 108, 14-23.	4.1	31
14	Understanding opioid reward. Trends in Neurosciences, 2015, 38, 217-225.	8.6	280
15	Endogenous Opioid Activity in the Anterior Cingulate Cortex Is Required for Relief of Pain. Journal of Neuroscience, 2015, 35, 7264-7271.	3.6	154
16	Direct Bidirectional μ-Opioid Control of Midbrain Dopamine Neurons. Journal of Neuroscience, 2014, 34, 14707-14716.	3.6	86
17	Intra-VTA Deltorphin, But Not DPDPE, Induces Place Preference in Ethanol-Drinking Rats: Distinct DOR-1 and DOR-2 Mechanisms Control Ethanol Consumption and Reward. Alcoholism: Clinical and Experimental Research, 2014, 38, 195-203.	2.4	21
18	More pain; less gain. Science, 2014, 345, 513-514.	12.6	13

#	Article	IF	CITATIONS
19	Opioid Modulation of Ventral Pallidal Afferents to Ventral Tegmental Area Neurons. Journal of Neuroscience, 2013, 33, 6454-6459.	3.6	88
20	Alcohol Consumption Induces Endogenous Opioid Release in the Human Orbitofrontal Cortex and Nucleus Accumbens. Science Translational Medicine, 2012, 4, 116ra6.	12.4	190
21	Pain relief produces negative reinforcement through activation of mesolimbic reward–valuation circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20709-20713.	7.1	258
22	Identification of Rat Ventral Tegmental Area GABAergic Neurons. PLoS ONE, 2012, 7, e42365.	2.5	159
23	Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neuroscience, 2012, 15, 1117-1119.	14.8	832
24	Pain and the primary somatosensory cortex. Pain, 2012, 153, 742-743.	4.2	9
25	The Doctor's Dilemma: Opiate Analgesics and Chronic Pain. Neuron, 2011, 69, 591-594.	8.1	133
26	Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain, 2011, 152, 1641-1648.	4.2	175
27	Roles of Nucleus Accumbens Core and Shell in Incentive-Cue Responding and Behavioral Inhibition. Journal of Neuroscience, 2011, 31, 6820-6830.	3.6	157
28	Nucleus Accumbens Medium Spiny Neurons Target Non-Dopaminergic Neurons in the Ventral Tegmental Area. Journal of Neuroscience, 2011, 31, 7811-7816.	3.6	180
29	Reliability in the Identification of Midbrain Dopamine Neurons. PLoS ONE, 2010, 5, e15222.	2.5	65
30	Unmasking the tonic-aversive state in neuropathic pain. Nature Neuroscience, 2009, 12, 1364-1366.	14.8	490
31	The Rostromedial Tegmental Nucleus (RMTg),Âa GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses. Neuron, 2009, 61, 786-800.	8.1	547
32	Basolateral Amygdala Neurons Facilitate Reward-Seeking Behavior by Exciting Nucleus Accumbens Neurons. Neuron, 2008, 59, 648-661.	8.1	407
33	δ-Opioid Receptor Expression in the Ventral Tegmental Area Protects Against Elevated Alcohol Consumption. Journal of Neuroscience, 2008, 28, 12672-12681.	3.6	86
34	Dorsomedial Prefrontal Cortex Contribution to Behavioral and Nucleus Accumbens Neuronal Responses to Incentive Cues. Journal of Neuroscience, 2008, 28, 5088-5098.	3.6	113
35	Midbrain Dopamine Neurons: Projection Target Determines Action Potential Duration and Dopamine D ₂ Receptor Inhibition. Journal of Neuroscience, 2008, 28, 8908-8913.	3.6	469
36	Ventral Tegmental Area Neurons in Learned Appetitive Behavior and Positive Reinforcement. Annual Review of Neuroscience, 2007, 30, 289-316.	10.7	517

#	Article	IF	CITATIONS
37	Should we be reluctant to prescribe opioids for chronic non-malignant pain?. Pain, 2007, 129, 233-234.	4.2	37
38	Endogenous opioids encode relative taste preference. European Journal of Neuroscience, 2006, 24, 1220-1226.	2.6	35
39	The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons?. Journal of Physiology, 2006, 577, 907-924.	2.9	453
40	opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2938-2942.	7.1	295
41	Both Kappa and Mu Opioid Agonists Inhibit Glutamatergic Input to Ventral Tegmental Area Neurons. Journal of Neurophysiology, 2005, 93, 3086-3093.	1.8	83
42	Cue-Evoked Firing of Nucleus Accumbens Neurons Encodes Motivational Significance During a Discriminative Stimulus Task. Journal of Neurophysiology, 2004, 91, 1840-1865.	1.8	165
43	Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior. European Journal of Neuroscience, 2004, 20, 249-263.	2.6	82
44	Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nature Neuroscience, 2004, 7, 398-403.	14.8	307
45	κ-Opioid Agonists Directly Inhibit Midbrain Dopaminergic Neurons. Journal of Neuroscience, 2003, 23, 9981-9986.	3.6	247
46	Causalgia and reflex sympathetic dystrophy: Does the sympathetic nervous system contribute to the generation of pain?. , 1999, 22, 678-695.		184
47	An analgesia circuit activated by cannabinoids. Nature, 1998, 395, 381-383.	27.8	398
48	On the functional anatomy of migraine. Annals of Neurology, 1998, 43, 272-272.	5.3	21
49	Pain: Anatomy and Physiology. Journal of Alternative and Complementary Medicine, 1997, 3, s-41-s-46.	2.1	4
50	GABA-immunoreactive boutons contact identified OFF and ON cells in the nucleus raphe magnus. Journal of Comparative Neurology, 1997, 378, 196-204.	1.6	20
51	Science in China. Science, 1996, 273, 1478-1478.	12.6	Ο
52	Science in China. Science, 1996, 273, 1478-1478.	12.6	0
53	Topical lidocaine gel relieves postherpetic neuralgia. Annals of Neurology, 1995, 37, 246-253.	5.3	246
54	Hyperalgesia during Naloxone-Precipitated Withdrawal from Morphine Is Associated with Increased On-Cell Activity in the Rostral Ventromedial Medulla. Somatosensory & Motor Research, 1990, 7, 185-203.	0.9	158

#	Article	IF	CITATIONS
55	Putative Nociceptive Modulatory Neurons in the Rostral Ventromedial Medulla of the Rat Display Highly Correlated Firing Patterns. Somatosensory & Motor Research, 1989, 6, 413-425.	0.9	84
56	Sources of variability in the sensation of pain. Pain, 1988, 33, 195-200.	4.2	46
57	Can opiates relieve neuropathic pain?. Pain, 1988, 35, 365.	4.2	47
58	Pain II: New approaches to management. Annals of Neurology, 1981, 9, 101-106.	5.3	26
59	The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation. Journal of Comparative Neurology, 1979, 187, 513-531.	1.6	602
60	Naloxone dose dependently produces analgesia and hyperalgesia in postoperative pain. Nature, 1979, 278, 740-741.	27.8	300
61	Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. Journal of Comparative Neurology, 1978, 178, 209-224.	1.6	628
62	A deeper dive into top-down control of pain and itch. Brain, 0, , .	7.6	0