
Wolfgang Forstmeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5260193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Occasional paternal inheritance of the germline-restricted chromosome in songbirds. Proceedings of the United States of America, 2022, 119, .	7.1	10
2	Machine learning reveals cryptic dialects that explain mate choice in a songbird. Nature Communications, 2022, 13, 1630.	12.8	12
3	Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Research, 2022, 30, 255-272.	2.2	11
4	A global analysis of song frequency in passerines provides no support for the acoustic adaptation hypothesis but suggests a role for sexual selection. Ecology Letters, 2021, 24, 477-486.	6.4	59
5	Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 2021, 53, 2576-2590.	4.0	218
6	A sex chromosome inversion is associated with copy number variation of mitochondrial DNA in zebra finch sperm. Royal Society Open Science, 2021, 8, 211025.	2.4	3
7	Is female mate choice repeatable across males with nearly identical songs?. Animal Behaviour, 2021, 181, 137-137.	1.9	0
8	Relationship quality underpins pair bond formation and subsequent reproductive performance. Animal Behaviour, 2021, 182, 43-58.	1.9	8
9	Fitness costs of female choosiness are low in a socially monogamous songbird. PLoS Biology, 2021, 19, e3001257.	5.6	4
10	The role of genetic constraints and social environment in explaining female extraâ€pair mating. Evolution; International Journal of Organic Evolution, 2020, 74, 544-558.	2.3	14
11	Proximate Causes of Infertility and Embryo Mortality in Captive Zebra Finches. American Naturalist, 2020, 196, 577-596.	2.1	8
12	Reply to â€~lt is time for an empirically informed paradigm shift in animal research'. Nature Reviews Neuroscience, 2020, 21, 661-662.	10.2	4
13	A test for meiotic drive in hybrids between Australian and Timor zebra finches. Ecology and Evolution, 2020, 10, 13464-13475.	1.9	3
14	Reproducibility of animal research in light of biological variation. Nature Reviews Neuroscience, 2020, 21, 384-393.	10.2	193
15	Offspring performance is well buffered against stress experienced by ancestors. Evolution; International Journal of Organic Evolution, 2020, 74, 1525-1539.	2.3	8
16	Traffic noise exposure depresses plasma corticosterone and delays offspring growth in breeding zebra finches. , 2019, 7, coz056.		35
17	Scrutinizing assortative mating in birds. PLoS Biology, 2019, 17, e3000156.	5.6	30
18	Programmed DNA elimination of germline development genes in songbirds. Nature Communications, 2019, 10, 5468.	12.8	66

Wolfgang Forstmeier

#	Article	IF	CITATIONS
19	Irreproducible text-book "knowledgeâ€ŧ The effects of color bands on zebra finch fitness. Evolution; International Journal of Organic Evolution, 2018, 72, 961-976.	2.3	19
20	Plumage color manipulation has no effect on social dominance or fitness in zebra finches. Behavioral Ecology, 2018, 29, 459-467.	2.2	13
21	Linking the fineâ€scale social environment to mating decisions: a future direction for the study of extraâ€pair paternity. Biological Reviews, 2018, 93, 1558-1577.	10.4	42
22	Empowering peer reviewers with a checklist to improve transparency. Nature Ecology and Evolution, 2018, 2, 929-935.	7.8	26
23	Inheritance patterns of plumage coloration in common buzzards <i>Buteo buteo</i> do not support a one-locus two-allele model. Biology Letters, 2018, 14, 20180007.	2.3	11
24	A trade-off between thickness and length in the zebra finch sperm mid-piece. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180865.	2.6	18
25	Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations. Molecular Ecology, 2017, 26, 1285-1305.	3.9	18
26	Male zebra finches have limited ability to identify high-fecundity females. Behavioral Ecology, 2017, 28, 784-792.	2.2	19
27	Testing the phenotypeâ€linked fertility hypothesis in the presence and absence of inbreeding. Journal of Evolutionary Biology, 2017, 30, 968-976.	1.7	6
28	Variation in Reproductive Success Across Captive Populations: Methodological Differences, Potential Biases and Opportunities. Ethology, 2017, 123, 1-29.	1.1	60
29	No mutual mate choice for quality in zebra finches: Time to question a widely held assumption. Evolution; International Journal of Organic Evolution, 2017, 71, 2661-2676.	2.3	20
30	A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nature Ecology and Evolution, 2017, 1, 1177-1184.	7.8	56
31	Meiotic recombination shapes precision of pedigree- and marker-based estimates of inbreeding. Heredity, 2017, 118, 239-248.	2.6	18
32	Detecting and avoiding likely falseâ€positive findings–Âa practical guide. Biological Reviews, 2017, 92, 1941-1968.	10.4	282
33	Preregister now for an upgrade to Behavioral Ecology 2.0: a comment on Ihle et al Behavioral Ecology, 2017, 28, 358-359.	2.2	3
34	Fitness consequences of polymorphic inversions in the zebra finch genome. Genome Biology, 2016, 17, 199.	8.8	50
35	Inbreeding depression of sperm traits in the zebra finch <i>Taeniopygia guttata</i> . Ecology and Evolution, 2016, 6, 295-304.	1.9	37
36	Transparency in Ecology and Evolution: Real Problems, Real Solutions. Trends in Ecology and Evolution, 2016, 31, 711-719.	8.7	151

#	Article	IF	CITATIONS
37	Mapping centromeres of microchromosomes in the zebra finch (Taeniopygia guttata) using half-tetrad analysis. Chromosoma, 2016, 125, 757-768.	2.2	17
38	The Ecology and Evolutionary Dynamics of Meiotic Drive. Trends in Ecology and Evolution, 2016, 31, 315-326.	8.7	305
39	Fitness Benefits of Mate Choice for Compatibility in a Socially Monogamous Species. PLoS Biology, 2015, 13, e1002248.	5.6	128
40	The functional morphology of male courtship displays in the Pectoral Sandpiper (<i>Calidris) Tj ETQq0 0 0 rgBT /</i>	Overlock 1.4	10 Tf 50 622 ⁻
41	Quantifying realized inbreeding in wild and captive animal populations. Heredity, 2015, 114, 397-403.	2.6	30
42	A prezygotic transmission distorter acting equally in female and male zebra finches <i>Taeniopygia guttata</i> . Molecular Ecology, 2015, 24, 3846-3859.	3.9	11
43	The Importance of Validating Experimental Setups: Lessons from Studies of Food Choice Copying in Zebra Finches. Ethology, 2014, 120, 913-922.	1.1	5
44	Triploid <scp>ZZZ Z</scp> ebra <scp>F</scp> inches <i><scp>T</scp>aeniopygia guttata</i> exhibit abnormal sperm heads and poor reproductive performance. Ibis, 2014, 156, 472-477.	1.9	4
45	Female extra-pair mating: adaptation or genetic constraint?. Trends in Ecology and Evolution, 2014, 29, 456-464.	8.7	161
46	Does hatching failure breed infidelity?. Behavioral Ecology, 2013, 24, 119-127.	2.2	21
47	SEX CHROMOSOME LINKED GENETIC VARIANCE AND THE EVOLUTION OF SEXUAL DIMORPHISM OF QUANTITATIVE TRAITS. Evolution; International Journal of Organic Evolution, 2013, 67, 609-619.	2.3	38
48	Acoustic similarity to parental calls promotes response to unfamiliar calls in zebra finch fledglings. Animal Behaviour, 2013, 86, 159-167.	1.9	2
49	Revisiting the evidence for inbreeding avoidance in zebra finches. Behavioral Ecology, 2013, 24, 1356-1362.	2.2	20
50	Basal metabolic rate can evolve independently of morphological and behavioural traits. Heredity, 2013, 111, 175-181.	2.6	34
51	No Band Color Effects on Male Courtship Rate or Body Mass in the Zebra Finch: Four Experiments and a Meta-Analysis. PLoS ONE, 2012, 7, e37785.	2.5	22
52	Singing activity stimulates partner reproductive investment rather than increasing paternity success in zebra finches. Behavioral Ecology and Sociobiology, 2012, 66, 975-984.	1.4	17
53	QTL linkage mapping of wing length in zebra finch using genomeâ€wide single nucleotide polymorphisms markers. Molecular Ecology, 2012, 21, 329-339.	3.9	23
54	QTL LINKAGE MAPPING OF ZEBRA FINCH BEAK COLOR SHOWS AN OLIGOGENIC CONTROL OF A SEXUALLY SELECTED TRAIT. Evolution; International Journal of Organic Evolution, 2012, 66, 18-30.	2.3	50

WOLFGANG FORSTMEIER

#	Article	IF	CITATIONS
55	Protein supplementation decreases courtship rate in the zebra finch. Animal Behaviour, 2012, 83, 69-74.	1.9	7
56	Heterozygosity–fitness correlations in zebra finches: microsatellite markers can be better than their reputation. Molecular Ecology, 2012, 21, 3237-3249.	3.9	133
57	QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Molecular Ecology, 2012, 21, 3704-3717.	3.9	21
58	Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse. Behavioral Ecology and Sociobiology, 2011, 65, 47-55.	1.4	813
59	Correlates of male fitness in captive zebra finches - a comparison of methods to disentangle genetic and environmental effects. BMC Evolutionary Biology, 2011, 11, 327.	3.2	12
60	Women have Relatively Larger Brains than Men: A Comment on the Misuse of General Linear Models in the Study of Sexual Dimorphism. Anatomical Record, 2011, 294, 1856-1863.	1.4	74
61	Female extrapair mating behavior can evolve via indirect selection on males. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10608-10613.	7.1	183
62	Quantitative genetics and fitness consequences of neophilia in zebra finches. Behavioral Ecology, 2011, 22, 126-134.	2.2	38
63	Do Zebra Finch Parents Fail to Recognise Their Own Offspring?. PLoS ONE, 2011, 6, e18466.	2.5	13
64	HERITABILITY OF AND EARLY ENVIRONMENT EFFECTS ON VARIATION IN MATING PREFERENCES. Evolution; International Journal of Organic Evolution, 2010, 64, 998-1006.	2.3	22
65	Individual recognition and potential recognition errors in parent–offspring communication. Behavioral Ecology and Sociobiology, 2010, 64, 1515-1525.	1.4	30
66	Inbreeding depression of sexually selected traits and attractiveness in the zebra finch. Animal Behaviour, 2010, 79, 947-955.	1.9	80
67	No heightened condition dependence of zebra finch ornaments – a quantitative genetic approach. Journal of Evolutionary Biology, 2010, 23, 586-597.	1.7	42
68	The recombination landscape of the zebra finch <i>Taeniopygia guttata</i> genome. Genome Research, 2010, 20, 485-495.	5.5	212
69	A polymorphism in the oestrogen receptor gene explains covariance between digit ratio and mating behaviour. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3353-3361.	2.6	39
70	Trisomy and triploidy are sources of embryo mortality in the zebra finch. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2655-2660.	2.6	28
71	Post-hatch oral estrogen in zebra finches (Taeniopygia guttata): Is infertility due to disrupted testes morphology or reduced copulatory behavior?. Physiology and Behavior, 2010, 101, 13-21.	2.1	9
72	Conclusions beyond support: overconfident estimates in mixed models. Behavioral Ecology, 2009, 20, 416-420.	2.2	704

WOLFGANG FORSTMEIER

#	Article	IF	CITATIONS
73	Compensatory investment in zebra finches: females lay larger eggs when paired to sexually unattractive males. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 707-715.	2.6	69
74	A quantitative genetic approach to understanding aggressive behavior. Behavioral and Brain Sciences, 2009, 32, 282-283.	0.7	0
75	THE GENETIC BASIS OF ZEBRA FINCH VOCALIZATIONS. Evolution; International Journal of Organic Evolution, 2009, 63, 2114-2130.	2.3	107
76	Sexual imprinting on continuous variation: do female zebra finches prefer or avoid unfamiliar sons of their foster parents?. Journal of Evolutionary Biology, 2008, 21, 1274-1280.	1.7	30
77	Digit ratio unaffected by estradiol treatment of zebra finch nestlings. General and Comparative Endocrinology, 2008, 156, 379-384.	1.8	14
78	Assortative versus disassortative mating preferences of female zebra finches based on self-referent phenotype matching. Animal Behaviour, 2008, 76, 1927-1934.	1.9	18
79	Constrained Performance in a Communication Network: Implications for the Function of Songâ€Type Matching and for the Evolution of Multiple Ornaments. American Naturalist, 2008, 172, 34-41.	2.1	147
80	Genetic variation and differentiation in captive and wild zebra finches (<i>Taeniopygia guttata</i>). Molecular Ecology, 2007, 16, 4039-4050.	3.9	156
81	Development of polymorphic microsatellite markers for the zebra finch (Taeniopygia guttata). Molecular Ecology Notes, 2007, 7, 1026-1028.	1.7	48
82	Intrasexual competition in zebra finches, the role of beak colour and body size. Animal Behaviour, 2007, 74, 715-724.	1.9	40
83	Superstition and belief as inevitable by-products of an adaptive learning strategy. Human Nature, 2007, 18, 35-46.	1.6	95
84	Do Individual Females Differ Intrinsically in Their Propensity to Engage in Extra-Pair Copulations?. PLoS ONE, 2007, 2, e952.	2.5	62
85	Does song reflect age and viability? A comparison between two populations of the great reed warbler Acrocephalus arundinaceus. Behavioral Ecology and Sociobiology, 2006, 59, 634-643.	1.4	53
86	Quantitative genetics and behavioural correlates of digit ratio in the zebra finch. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2641-2649.	2.6	69
87	Repertoire size, sexual selection, and offspring viability in the great reed warbler: changing patterns in space and time. Behavioral Ecology, 2004, 15, 555-563.	2.2	41
88	MATERNAL EFFECTS INFLUENCE THE SEXUAL BEHAVIOR OF SONS AND DAUGHTERS IN THE ZEBRA FINCH. Evolution; International Journal of Organic Evolution, 2004, 58, 2574-2583.	2.3	68
89	Female resistance to male seduction in zebra finches. Animal Behaviour, 2004, 68, 1005-1015.	1.9	47
90	Repeatability of mate choice in the zebra finch: consistency within and between females. Animal Behaviour, 2004, 68, 1017-1028.	1.9	134

#	Article	IF	CITATIONS
91	The distribution of extra-pair young within and among broods - a technique to calculate deviations from randomness. Journal of Avian Biology, 2001, 32, 358-363.	1.2	16