Pavlos Kollias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5260142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bulletin of the American Meteorological Society, 2015, 96, 1311-1332.	3.3	443
2	Rain in Shallow Cumulus Over the Ocean: The RICO Campaign. Bulletin of the American Meteorological Society, 2007, 88, 1912-1928.	3.3	363
3	Short-Wavelength Technology and the Potential For Distributed Networks of Small Radar Systems. Bulletin of the American Meteorological Society, 2009, 90, 1797-1818.	3.3	220
4	Millimeter-Wavelength Radars: New Frontier in Atmospheric Cloud and Precipitation Research. Bulletin of the American Meteorological Society, 2007, 88, 1608-1624.	3.3	204
5	Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives. Reviews of Geophysics, 2018, 56, 409-453.	23.0	185
6	A Focus On Mixed-Phase Clouds. Bulletin of the American Meteorological Society, 2008, 89, 1549-1562.	3.3	145
7	Improved Micro Rain Radar snow measurements using Doppler spectra post-processing. Atmospheric Measurement Techniques, 2012, 5, 2661-2673.	3.1	135
8	The Midlatitude Continental Convective Clouds Experiment (MC3E). Bulletin of the American Meteorological Society, 2016, 97, 1667-1686.	3.3	131
9	Vertical Motions in Arctic Mixed-Phase Stratiform Clouds. Journals of the Atmospheric Sciences, 2008, 65, 1304-1322.	1.7	127
10	Observed relations between snowfall microphysics and tripleâ€frequency radar measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6034-6055.	3.3	123
11	Radar Observations of Updrafts, Downdrafts, and Turbulence in Fair-Weather Cumuli. Journals of the Atmospheric Sciences, 2001, 58, 1750-1766.	1.7	119
12	The Atmospheric Radiation Measurement Program Cloud Profiling Radars: Second-Generation Sampling Strategies, Processing, and Cloud Data Products. Journal of Atmospheric and Oceanic Technology, 2007, 24, 1199-1214.	1.3	117
13	Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment. Bulletin of the American Meteorological Society, 2015, 96, 419-440.	3.3	117
14	Cloudâ€resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9351-9378.	3.3	106
15	Marine Boundary Layer Cloud Observations in the Azores. Journal of Climate, 2012, 25, 7381-7398.	3.2	98
16	Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra. Journal of Atmospheric and Oceanic Technology, 2004, 21, 660-670.	1.3	89
17	Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications. Journal of Geophysical Research, 2011, 116, .	3.3	84
18	Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign. Journal of Climate. 2015. 28, 2420-2442.	3.2	83

#	Article	IF	CITATIONS
19	Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For Measurement's Sake, Let It Snow. Bulletin of the American Meteorological Society, 2015, 96, 1719-1741.	3.3	82
20	Spaceborne Cloud and Precipitation Radars: Status, Challenges, and Ways Forward. Reviews of Geophysics, 2020, 58, e2019RG000686.	23.0	78
21	Separating Cloud and Drizzle Radar Moments during Precipitation Onset Using Doppler Spectra. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1656-1671.	1.3	73
22	On Deriving Vertical Air Motions from Cloud Radar Doppler Spectra. Journal of Atmospheric and Oceanic Technology, 2008, 25, 547-557.	1.3	70
23	The Turbulence Structure in a Continental Stratocumulus Cloud from Millimeter-Wavelength Radar Observations. Journals of the Atmospheric Sciences, 2000, 57, 2417-2434.	1.7	69
24	Why Mie?. Bulletin of the American Meteorological Society, 2002, 83, 1471-1484.	3.3	69
25	Development and Applications of ARM Millimeter-Wavelength Cloud Radars. Meteorological Monographs, 2016, 57, 17.1-17.19.	5.0	65
26	Detection of supercooled liquid in mixedâ€phase clouds using radar Doppler spectra. Journal of Geophysical Research, 2010, 115, .	3.3	63
27	A W-Band Radar–Radiometer System for Accurate and Continuous Monitoring of Clouds and Precipitation. Journal of Atmospheric and Oceanic Technology, 2017, 34, 2375-2392.	1.3	63
28	Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling. Atmospheric Chemistry and Physics, 2016, 16, 2997-3012.	4.9	60
29	Improving representation of convective transport for scaleâ€eware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3485-3509.	3.3	57
30	Evaluation of EarthCARE Cloud Profiling Radar Doppler Velocity Measurements in Particle Sedimentation Regimes. Journal of Atmospheric and Oceanic Technology, 2014, 31, 366-386.	1.3	51
31	Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes. Atmospheric Chemistry and Physics, 2018, 18, 17615-17635.	4.9	51
32	Scanning ARM Cloud Radars. Part I: Operational Sampling Strategies. Journal of Atmospheric and Oceanic Technology, 2014, 31, 569-582.	1.3	49
33	Silicone and Teflon Prostheses, Including Full Jaw Substitution. Annals of Surgery, 1963, 157, 932-943.	4.2	48
34	First observations of tripleâ€frequency radar Doppler spectra in snowfall: Interpretation and applications. Geophysical Research Letters, 2016, 43, 2225-2233.	4.0	48
35	The Atmospheric Radiation Measurement Program Cloud Profiling Radars: An Evaluation of Signal Processing and Sampling Strategies. Journal of Atmospheric and Oceanic Technology, 2005, 22, 930-948.	1.3	47
36	A Technique for the Automatic Detection of Insect Clutter in Cloud Radar Returns. Journal of Atmospheric and Oceanic Technology, 2008, 25, 1498-1513.	1.3	47

#	Article	IF	CITATIONS
37	Impact of Dynamics and Atmospheric State on Cloud Vertical Overlap. Journal of Climate, 2008, 21, 1758-1770.	3.2	47
38	Boundary Layer, Cloud, and Drizzle Variability in the Southeast Pacific Stratocumulus Regime. Journal of Climate, 2008, 21, 6191-6214.	3.2	47
39	G band atmospheric radars: new frontiers in cloud physics. Atmospheric Measurement Techniques, 2014, 7, 1527-1546.	3.1	45
40	On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5972-5989.	3.3	44
41	Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover. Geophysical Research Letters, 2015, 42, 8693-8701.	4.0	43
42	Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus. Journal of Geophysical Research, 2007, 112, .	3.3	40
43	Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution. Journal of Geophysical Research, 2011, 116, .	3.3	39
44	Observations of marine stratocumulus in SE Pacific during the PACS 2003 cruise. Geophysical Research Letters, 2004, 31, .	4.0	38
45	Lidar and Triple-Wavelength Doppler Radar Measurements of the Melting Layer: A Revised Model for Dark- and Brightband Phenomena. Journal of Applied Meteorology and Climatology, 2005, 44, 301-312.	1.7	38
46	Observations of the variability of shallow trade wind cumulus cloudiness and mass flux. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6161-6178.	3.3	38
47	On Polarimetric Radar Signatures of Deep Convection for Model Evaluation: Columns of Specific Differential Phase Observed during MC3E*. Monthly Weather Review, 2016, 144, 737-758.	1.4	38
48	Vertical Velocity Statistics in Fair-Weather Cumuli at the ARM TWP Nauru Climate Research Facility. Journal of Climate, 2010, 23, 6590-6604.	3.2	37
49	Climatology of High Cloud Dynamics Using Profiling ARM Doppler Radar Observations. Journal of Climate, 2013, 26, 6340-6359.	3.2	37
50	Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of Radar Moments Using in situ Aircraft Observations. Journal of Atmospheric and Oceanic Technology, 2015, 32, 880-903.	1.3	37
51	The ARM Radar Network: At the Leading Edge of Cloud and Precipitation Observations. Bulletin of the American Meteorological Society, 2020, 101, E588-E607.	3.3	35
52	PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geoscientific Model Development, 2020, 13, 4229-4251.	3.6	35
53	Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities. Journal of Applied Meteorology and Climatology, 2012, 51, 380-391.	1.5	34
54	Disentangling Mie and attenuation effects in rain using a K _{<i>a</i>} â€W dualâ€wavelength Doppler spectral ratio technique. Geophysical Research Letters, 2013, 40, 5548-5552.	4.0	34

#	Article	IF	CITATIONS
55	Cloud radar observations of vertical drafts and microphysics in convective rain. Journal of Geophysical Research, 2003, 108, .	3.3	33
56	Long-Term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility. Journal of Climate, 2010, 23, 5699-5714.	3.2	33
57	Vertical velocity structure of nonprecipitating continental boundary layer stratocumulus clouds. Journal of Geophysical Research, 2010, 115, .	3.3	33
58	The Two olumn Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2016, 121, 336-361.	3.3	33
59	New insights into ice multiplication using remote-sensing observations of slightly supercooled mixed-phase clouds in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
60	Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA). Bulletin of the American Meteorological Society, 2022, 103, E619-E641.	3.3	33
61	Scanning ARM Cloud Radars. Part II: Data Quality Control and Processing. Journal of Atmospheric and Oceanic Technology, 2014, 31, 583-598.	1.3	31
62	Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements. Atmospheric Chemistry and Physics, 2018, 18, 4317-4327.	4.9	31
63	Why the melting layer radar reflectivity is not bright at 94 GHz. Geophysical Research Letters, 2005, 32,	4.0	30
64	Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds. Atmospheric Chemistry and Physics, 2017, 17, 12725-12742.	4.9	30
65	Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation. Atmospheric Chemistry and Physics, 2018, 18, 7313-7328.	4.9	30
66	Polarization Diversity for Millimeter Spaceborne Doppler Radars: An Answer for Observing Deep Convection?. Journal of Atmospheric and Oceanic Technology, 2013, 30, 2768-2787.	1.3	29
67	Simulation of EarthCARE Spaceborne Doppler Radar Products Using Ground-Based and Airborne Data: Effects of Aliasing and Nonuniform Beam-Filling. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 1463-1479.	6.3	29
68	Automated Retrievals of Precipitation Parameters Using Non-Rayleigh Scattering at 95 GHz. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1490-1503.	1.3	28
69	Two distinct modes in oneâ€day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRFâ€6BM simulation. Geophysical Research Letters, 2012, 39, .	4.0	28
70	Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site. Journals of the Atmospheric Sciences, 2017, 74, 3229-3251.	1.7	28
71	Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E. Atmospheric Measurement Techniques, 2017, 10, 2785-2806.	3.1	28
72	The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of aÂvirtual observatory. Geoscientific Model Development, 2020, 13, 1975-1998.	3.6	28

#	Article	IF	CITATIONS
73	Cloud, thermodynamic, and precipitation observations in West Africa during 2006. Journal of Geophysical Research, 2009, 114, .	3.3	27
74	Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2797-2815.	3.3	27
75	Calibration of the 2007–2017 record of Atmospheric Radiation Measurements cloud radar observations using CloudSat. Atmospheric Measurement Techniques, 2019, 12, 4949-4964.	3.1	27
76	Multiple scattering identification in spaceborne W-band radar measurements of deep convective cores. Journal of Geophysical Research, 2011, 116, .	3.3	26
77	WIVERN: A New Satellite Concept to Provide Global In-Cloud Winds, Precipitation, and Cloud Properties. Bulletin of the American Meteorological Society, 2018, 99, 1669-1687.	3.3	26
78	Signal Postprocessing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915-MHz Wind Profilers. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1038-1054.	1.3	25
79	Rain retrieval from dualâ€frequency radar Doppler spectra: validation and potential for a midlatitude precipitating caseâ€study. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1364-1380.	2.7	25
80	Raindrop sorting induced by vertical drafts in convective clouds. Geophysical Research Letters, 2001, 28, 2787-2790.	4.0	24
81	The Role of Shallow Cloud Moistening in MJO and Non-MJO Convective Events over the ARM Manus Site. Journals of the Atmospheric Sciences, 2015, 72, 4797-4820.	1.7	24
82	The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models. Bulletin of the American Meteorological Society, 2018, 99, 21-26.	3.3	24
83	Ice clouds microphysical retrieval using 94â€GHz Doppler radar observations: Basic relations within the retrieval framework. Journal of Geophysical Research, 2012, 117, .	3.3	23
84	Estimation of cloud fraction profile in shallow convection using a scanning cloud radar. Geophysical Research Letters, 2016, 43, 10,998.	4.0	22
85	Investigation of observational error sources in multi-Doppler-radar three-dimensional variational veriational vertical air motion retrievals. Atmospheric Measurement Techniques, 2019, 12, 1999-2018.	3.1	22
86	Vertical air motion and raindrop size distributions in convective systems using a 94 GHz radar. Geophysical Research Letters, 1999, 26, 3109-3112.	4.0	21
87	The performance of the EarthCARE Cloud Profiling Radar in marine stratiform clouds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,525.	3.3	21
88	Automated rain rate estimates using the Ka-band ARM zenith radar (KAZR). Atmospheric Measurement Techniques, 2015, 8, 3685-3699.	3.1	20
89	Use of Cloud Radar Doppler Spectra to Evaluate Stratocumulus Drizzle Size Distributions in Large-Eddy Simulations with Size-Resolved Microphysics. Journal of Applied Meteorology and Climatology, 2017, 56, 3263-3283.	1.5	20
90	Scaling of Drizzle Virga Depth With Cloud Thickness for Marine Stratocumulus Clouds. Geophysical Research Letters, 2018, 45, 3746-3753.	4.0	20

#	Article	IF	CITATIONS
91	First Observations of Tracking Clouds Using Scanning ARM Cloud Radars. Journal of Applied Meteorology and Climatology, 2014, 53, 2732-2746.	1.5	18
92	Characterization of shallow oceanic precipitation using profiling and scanning radar observations at the Eastern North Atlantic ARM observatory. Atmospheric Measurement Techniques, 2019, 12, 4931-4947.	3.1	18
93	Chasing Snowstorms: The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Campaign. Bulletin of the American Meteorological Society, 2022, 103, E1243-E1269.	3.3	18
94	Multiyear Summertime Observations of Daytime Fair-Weather Cumuli at the ARM Southern Great Plains Facility. Journal of Climate, 2013, 26, 10031-10050.	3.2	17
95	Biases caused by the instrument bandwidth and beam width on simulated brightness temperature measurements from scanning microwave radiometers. Atmospheric Measurement Techniques, 2013, 6, 1171-1187.	3.1	17
96	On the Controls of Daytime Precipitation in the Amazonian Dry Season. Journal of Hydrometeorology, 2016, 17, 3079-3097.	1.9	17
97	Influences of drizzle on stratocumulus cloudiness and organization. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6989-7003.	3.3	17
98	Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmospheric Measurement Techniques, 2017, 10, 1783-1802.	3.1	17
99	Evaluation of differential absorption radars in the 183 GHz band for profiling water vapour in ice clouds. Atmospheric Measurement Techniques, 2019, 12, 3335-3349.	3.1	17
100	Microwave Radar/radiometer for Arctic Clouds (MiRAC): first insights from the ACLOUD campaign. Atmospheric Measurement Techniques, 2019, 12, 5019-5037.	3.1	17
101	Mind the gap – Part 1: Accurately locating warm marine boundary layer clouds and precipitation using spaceborne radars. Atmospheric Measurement Techniques, 2020, 13, 2363-2379.	3.1	16
102	Observations of Aerosol, Cloud, Turbulence, and Radiation Properties at the Top of the Marine Boundary Layer over the Eastern North Atlantic Ocean: The ACORES Campaign. Bulletin of the American Meteorological Society, 2021, 102, E123-E147.	3.3	16
103	Cloud seeding as a technique for studying aerosolâ€cloud interactions in marine stratocumulus. Geophysical Research Letters, 2007, 34, .	4.0	15
104	Considerations for spaceborne 94 GHz radar observations of precipitation. Geophysical Research Letters, 2007, 34, .	4.0	15
105	Vertical velocities and turbulence in midlatitude anvil cirrus: A comparison between in situ aircraft measurements and groundâ€based Doppler cloud radar retrievals. Geophysical Research Letters, 2014, 41, 7814-7821.	4.0	15
106	Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with shipâ€based and satellite remote sensing observations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2403-2418.	3.3	15
107	Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions. Journals of the Atmospheric Sciences, 2018, 75, 257-274.	1.7	15
108	The Vertical Structure of Liquid Water Content in Shallow Clouds as Retrieved From Dualâ€Wavelength Radar Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 14184-14197.	3.3	15

#	Article	IF	CITATIONS
109	Radar-radiometer retrievals of cloud number concentration and dispersion parameter in nondrizzling marine stratocumulus. Atmospheric Measurement Techniques, 2013, 6, 1817-1828.	3.1	14
110	Reconciling Differences Between Largeâ€Eddy Simulations and Doppler Lidar Observations of Continental Shallow Cumulus Cloudâ€Base Vertical Velocity. Geophysical Research Letters, 2019, 46, 11539-11547.	4.0	14
111	Comparison of Antarctic and Arctic Single‣ayer Stratiform Mixedâ€Phase Cloud Properties Using Groundâ€Based Remote Sensing Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10186-10204.	3.3	14
112	The EarthCARE cloud profiling radar (CPR) doppler measurements in deep convection: challenges, post-processing, and science applications. , 2018, , .		14
113	High-Resolution Observations of Mammatus in Tropical Anvils. Monthly Weather Review, 2005, 133, 2105-2112.	1.4	13
114	Application of Matched Statistical Filters for EarthCARE Cloud Doppler Products. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 7297-7316.	6.3	13
115	Using Ice Clouds for Mitigating the EarthCARE Doppler Radar Mispointing. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 2079-2085.	6.3	13
116	Planning the Next Decade of Coordinated Research to Better Understand and Simulate Marine Low Clouds. Bulletin of the American Meteorological Society, 2016, 97, 1699-1702.	3.3	13
117	Multifrequency radar observations of clouds and precipitation including the G-band. Atmospheric Measurement Techniques, 2021, 14, 3615-3629.	3.1	13
118	On the Estimation of In loud Vertical Air Motion Using Radar Doppler Spectra. Geophysical Research Letters, 2021, 48, .	4.0	13
119	Turbulence in Continental Stratocumulus, Part I: External Forcings and Turbulence Structures. Boundary-Layer Meteorology, 2014, 150, 341-360.	2.3	12
120	(GO) ² -SIM: a GCM-oriented ground-observation forward-simulator framework for objective evaluation of cloud and precipitation phase. Geoscientific Model Development, 2018, 11, 4195-4214.	3.6	12
121	Revisiting Liquid Water Content Retrievals in Warm Stratified Clouds: The Modified Frisch. Geophysical Research Letters, 2018, 45, 9323-9330.	4.0	12
122	A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing. Journal of Atmospheric and Oceanic Technology, 2019, 36, 781-801.	1.3	12
123	Analysis of the microphysical properties of snowfall using scanning polarimetric and vertically pointing multi-frequency Doppler radars. Atmospheric Measurement Techniques, 2021, 14, 4893-4913.	3.1	12
124	A new approach to estimate supersaturation fluctuations in stratocumulus cloud using ground-based remote-sensing measurements. Atmospheric Measurement Techniques, 2019, 12, 5817-5828.	3.1	11
125	Mind the gap – PartÂ2: Improving quantitative estimates of cloud and rain water path in oceanic warm rain using spaceborne radars. Atmospheric Measurement Techniques, 2020, 13, 4865-4883.	3.1	11
126	The role of cloud-scale resolution on radiative properties of oceanic cumulus clouds. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91, 211-226.	2.3	10

#	Article	IF	CITATIONS
127	Context, cortex, and associations: a connectionist developmental approach to verbal analogies. Frontiers in Psychology, 2013, 4, 857.	2.1	10
128	Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical doppler velocity retrievals. Atmospheric Measurement Techniques, 2014, 7, 1089-1103.	3.1	10
129	Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment. Journal of Applied Meteorology and Climatology, 2014, 53, 2503-2523.	1.5	10
130	Error Analysis of a Conceptual Cloud Doppler Stereoradar with Polarization Diversity for Better Understanding Space Applications. Journal of Atmospheric and Oceanic Technology, 2015, 32, 1298-1319.	1.3	10
131	Evaluation of Shallowâ€Cumulus Entrainment Rate Retrievals Using Largeâ€Eddy Simulation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9624-9643.	3.3	10
132	Triple-Frequency Radar Retrievals. Advances in Global Change Research, 2020, , 211-229.	1.6	10
133	Microphysical Insights into Ice Pellet Formation Revealed by Fully Polarimetric Ka-Band Doppler Radar. Journal of Applied Meteorology and Climatology, 2020, 59, 1557-1580.	1.5	10
134	A Supplement to Rain in Shallow Cumulus Over the Ocean: The RICO Campaign. Bulletin of the American Meteorological Society, 2007, 88, S12-S18.	3.3	9
135	Zenith/Nadir Pointing mm-Wave Radars: Linear or Circular Polarization?. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 628-639.	6.3	9
136	Turbulence in Continental Stratocumulus, Part II: Eddy Dissipation Rates and Large-Eddy Coherent Structures. Boundary-Layer Meteorology, 2014, 150, 361-380.	2.3	8
137	Retrieval of Vertical Air Motion in Precipitating Clouds Using Mie Scattering and Comparison with In Situ Measurements. Journal of Applied Meteorology and Climatology, 2017, 56, 537-553.	1.5	8
138	Advances and applications in low-power phased array X-band weather radars. , 2018, , .		8
139	Agile Adaptive Radar Sampling of Fastâ€Evolving Atmospheric Phenomena Guided by Satellite Imagery and Surface Cameras. Geophysical Research Letters, 2020, 47, e2020GL088440.	4.0	8
140	Environmental sensitivities of shallow-cumulus dilution – Part 1: Selected thermodynamic conditions. Atmospheric Chemistry and Physics, 2020, 20, 13217-13239.	4.9	8
141	Dimethylsiloxane and halogenated carbons as subcutaneous prosthesis. American Surgeon, 1962, 28, 146-8.	0.8	8
142	New insights on the prevalence of drizzle in marine stratocumulus clouds based on a machine learning algorithm applied to radar Doppler spectra. Atmospheric Chemistry and Physics, 2022, 22, 7405-7416.	4.9	8
143	On using the relationship between Doppler velocity and radar reflectivity to identify microphysical processes in midlatitudinal ice clouds. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,168.	3.3	7
144	Relationship between Turbulence and Drizzle in Continental and Marine Low Stratiform Clouds. Journals of the Atmospheric Sciences, 2018, 75, 4139-4148.	1.7	7

#	Article	IF	CITATIONS
145	Mind the Gap - Part 3: Doppler Velocity Measurements From Space. Frontiers in Remote Sensing, 2022, 3,	3.5	7
146	Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud type climatology. Geophysical Research Letters, 2007, 34, .	4.0	6
147	Insights from modeling and observational evaluation of a precipitating continental cumulus event observed during the MC3E field campaign. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1980-1995.	3.3	6
148	The Impact of the Radar-Sampling Volume on Multiwavelength Spaceborne Radar Measurements Using Airborne Radar Observations. Remote Sensing, 2019, 11, 2263.	4.0	5
149	Multilayer cloud conditions in trade wind shallow cumulus – confronting two ICON model derivatives with airborne observations. Geoscientific Model Development, 2020, 13, 5757-5777.	3.6	5
150	Rainâ€ r ate estimation algorithm using signal attenuation of Kaâ€band cloud radar. Meteorological Applications, 2020, 27, e1825.	2.1	4
151	Environmental sensitivities of shallow-cumulus dilution – Part 2: Vertical wind profile. Atmospheric Chemistry and Physics, 2021, 21, 14039-14058.	4.9	4
152	On the Forward Modeling of Radar Doppler Spectrum Width From LES: Implications for Model Evaluation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7444-7461.	3.3	3
153	Supercooled Liquid Water Detection Capabilities from Ka-Band Doppler Profiling Radars: Moment-Based Algorithm Formulation and Assessment. Remote Sensing, 2021, 13, 2891.	4.0	3
154	On the Challenges of Tomography Retrievals of a 2D Water Vapor Field Using Ground-Based Microwave Radiometers: An Observation System Simulation Experiment. Journal of Atmospheric and Oceanic Technology, 2015, 32, 116-130.	1.3	2
155	Impact of Receiver Saturation on Surface Doppler Velocity Measurements From the EarthCARE Cloud Profiling Radar. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 1205-1212.	6.3	2
156	Snowflake Selfies: A Low-Cost, High-Impact Approach toward Student Engagement in Scientific Research (with Their Smartphones). Bulletin of the American Meteorological Society, 2020, 101, E917-E935.	3.3	2
157	Time-Delayed Tandem Microwave Observations of Tropical Deep Convection: Overview of the C2OMODO Mission. Frontiers in Remote Sensing, 2022, 3, .	3.5	2
158	Agile Weather Observations using a Dual-Polarization X-band Phased Array Radar. , 2022, , .		2
159	Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations. Atmospheric Measurement Techniques, 2022, 15, 3011-3030.	3.1	2
160	The Second ARM Training and Science Application Event: Training the Next Generation of Atmospheric Scientists. Bulletin of the American Meteorological Society, 2019, 100, ES5-ES9.	3.3	1
161	Markovian approach and its applications in a cloudy atmosphere. , 2013, , 69-107.		0
162	Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment. Bulletin of the American Meteorological Society, 2016, 2016, 419-440.	3.3	0