
Michael J Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/526010/publications.pdf Version: 2024-02-01

MICHAEL SHAW

#	Article	IF	CITATIONS
1	Content aware multi-focus image fusion for high-magnification blood film microscopy. Biomedical Optics Express, 2022, 13, 1005.	2.9	2
2	Stain-free identification of tissue pathology using a generative adversarial network to infer nanomechanical signatures. Nanoscale Advances, 2021, 3, 6403-6414.	4.6	1
3	mmSIM: an open toolbox for accessible structured illumination microscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200353.	3.4	2
4	Optical mesoscopy, machine learning, and computational microscopy enable high information content diagnostic imaging of blood films. Journal of Pathology, 2021, 255, 62-71.	4.5	10
5	Histological and cytological imaging using Fourier ptychographic microscopy. , 2021, , .		0
6	Engineering Chirally Blind Protein Pseudocapsids into Antibacterial Persisters. ACS Nano, 2020, 14, 1609-1622.	14.6	42
7	Data-driven malaria prevalence prediction in large densely populated urban holoendemic sub-Saharan West Africa. Scientific Reports, 2020, 10, 15918.	3.3	16
8	Expertâ€level automated malaria diagnosis on routine blood films with deep neural networks. American Journal of Hematology, 2020, 95, 883-891.	4.1	30
9	Digital refocusing and extended depth of field reconstruction in Fourier ptychographic microscopy. Biomedical Optics Express, 2020, 11, 215.	2.9	22
10	Structure-dependent amplification for denoising and background correction in Fourier ptychographic microscopy. Optics Express, 2020, 28, 35438.	3.4	7
11	Reactive Polymorphic Nanoparticles: Preparation via Polymerizationâ€Induced Selfâ€Assembly and Postsynthesis Thiol– <i>para</i> â€Fluoro Core Modification. Macromolecular Rapid Communications, 2019, 40, e1800346.	3.9	26
12	Construction and testing of an atmospheric-pressure transmission-mode matrix assisted laser desorption ionisation mass spectrometry imaging ion source with plasma ionisation enhancement. Analytica Chimica Acta, 2019, 1051, 110-119.	5.4	23
13	Whole-Sample Mapping of Cancerous and Benign Tissue Properties. Lecture Notes in Computer Science, 2019, , 760-768.	1.3	1
14	Imaging Protein Fibers at the Nanoscale and In Situ. Methods in Molecular Biology, 2018, 1777, 83-100.	0.9	2
15	High affinity single-chain variable fragments are specific and versatile targeting motifs for extracellular vesicles. Nanoscale, 2018, 10, 14230-14244.	5.6	73
16	Three-dimensional behavioural phenotyping of freely moving C. elegans using quantitative light field microscopy. PLoS ONE, 2018, 13, e0200108.	2.5	20
17	Microscope calibration using laser written fluorescence. Optics Express, 2018, 26, 21887.	3.4	29
18	Determining the biomechanics of touch sensation in C. elegans. Scientific Reports, 2017, 7, 12329.	3.3	14

MICHAEL J SHAW

#	Article	IF	CITATIONS
19	CREIM: Coffee Ring Effect Imaging Model for Monitoring Protein Self-Assembly <i>in Situ</i> . Journal of Physical Chemistry Letters, 2017, 8, 4846-4851.	4.6	14
20	In-vivo high resolution AFM topographic imaging of Caenorhabditis elegans reveals previously unreported surface structures of cuticle mutants. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 183-189.	3.3	28
21	Investigation of mechanosensation in C elegans using light field calcium imaging. Biomedical Optics Express, 2016, 7, 2877.	2.9	6
22	Nano-mechanical single-cell sensing of cell–matrix contacts. Nanoscale, 2016, 8, 18105-18112.	5.6	7
23	Superâ€resolution microscopy as a potential approach to diagnosis of platelet granule disorders. Journal of Thrombosis and Haemostasis, 2016, 14, 839-849.	3.8	44
24	High speed structured illumination microscopy in optically thick samples. Methods, 2015, 88, 11-19.	3.8	39
25	Filming protein fibrillogenesis in real time. Scientific Reports, 2015, 4, 7529.	3.3	14
26	Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy. Biomedical Optics Express, 2014, 5, 2580.	2.9	57
27	Three-Dimensional Cell Morphometry for the Quantification of Cell–Substrate Interactions. Tissue Engineering - Part C: Methods, 2013, 19, 48-56.	2.1	3
28	Investigation of the confocal wavefront sensor and its application to biological microscopy. Optics Express, 2013, 21, 19353.	3.4	12
29	Polarization effects on contrast in structured illumination microscopy. Optics Letters, 2012, 37, 4603.	3.3	35
30	Arbitrary Selfâ€Assembly of Peptide Extracellular Microscopic Matrices. Angewandte Chemie - International Edition, 2012, 51, 428-431.	13.8	33
31	Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy. Optics Express, 2010, 18, 6900.	3.4	22
32	Array-based goniospectroradiometer for measurement of spectral radiant intensity and spectral total flux of light sources. Applied Optics, 2008, 47, 2637.	2.1	29
33	A new goniospectrophotometer for measuring gonio-apparent materials. Coloration Technology, 2005, 121, 96-103.	1.5	14
34	The design of the new NPL reference spectrofluorimeter. , 2003, , .		4
35	Diffuse reflectance scales at NPL. , 2003, , .		4
36	Goniometric realization of diffuse reflectance scales at NPL. , 2003, 5192, 123.		0