Ellen Brooks-Pollock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5259998/publications.pdf

Version: 2024-02-01

48 papers

2,271 citations

430754 18 h-index 302012 39 g-index

71 all docs

71 docs citations

times ranked

71

4461 citing authors

#	Article	IF	Citations
1	Reassessing the evidence for universal school-age BCG vaccination in England and Wales: re-evaluating and updating a modelling study. BMJ Open, 2022, 12, e031573.	0.8	O
2	MetaWards: A flexible metapopulation framework for modelling disease spread. Journal of Open Source Software, 2022, 7, 3914.	2.0	0
3	Estimating the COVID-19 epidemic trajectory and hospital capacity requirements in South West England: a mathematical modelling framework. BMJ Open, 2021, 11, e041536.	0.8	24
4	A novel approach for evaluating contact patterns and risk mitigation strategies for COVID-19 in English primary schools with application of structured expert judgement. Royal Society Open Science, 2021, 8, 201566.	1.1	7
5	Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ, The, 2021, 372, n579.	3.0	648
6	The population attributable fraction of cases due to gatherings and groups with relevance to COVID-19 mitigation strategies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200273.	1.8	8
7	Mapping social distancing measures to the reproduction number for COVID-19. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200276.	1.8	24
8	Estimates of regional infectivity of COVID-19 in the United Kingdom following imposition of social distancing measures. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200280.	1.8	10
9	A spatial model of COVID-19 transmission in England and Wales: early spread, peak timing and the impact of seasonality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200272.	1.8	43
10	Modelling that shaped the early COVID-19 pandemic response in the UK. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20210001.	1.8	48
11	Household bubbles and COVID-19 transmission: insights from percolation theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200284.	1.8	18
12	Contacts and behaviours of university students during the COVID-19 pandemic at the start of the $2020/2021$ academic year. Scientific Reports, 2021 , 11 , 11728 .	1.6	23
13	SARS-CoV-2 infection in UK university students: lessons from September–December 2020 and modelling insights for future student return. Royal Society Open Science, 2021, 8, 210310.	1.1	15
14	High COVID-19 transmission potential associated with re-opening universities can be mitigated with layered interventions. Nature Communications, 2021, 12, 5017.	5.8	43
15	Cell-phone traces reveal infection-associated behavioral change. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	9
16	Influence of commissioned provider type and deprivation score on uptake of the childhood flu immunization. Journal of Public Health, 2020, 42, 618-624.	1.0	3
17	A model of tuberculosis clustering in low incidence countries reveals more transmission in the United Kingdom than the Netherlands between 2010 and 2015. PLoS Computational Biology, 2020, 16, e1007687.	1.5	6
18	The Avon Longitudinal Study of Parents and Children - A resource for COVID-19 research: Generation 2 questionnaire data capture May-July 2020. Wellcome Open Research, 2020, 5, 278.	0.9	6

#	Article	IF	Citations
19	A flexible method for optimising sharing of healthcare resources and demand in the context of the COVID-19 pandemic. PLoS ONE, 2020, 15, e0241027.	1.1	27
20	The Avon Longitudinal Study of Parents and Children - A resource for COVID-19 research: Generation 2 questionnaire data capture May-July 2020. Wellcome Open Research, 2020, 5, 278.	0.9	2
21	Title is missing!. , 2020, 16, e1007687.		0
22	Title is missing!. , 2020, 16, e1007687.		0
23	Title is missing!. , 2020, 16, e1007687.		0
24	Title is missing!. , 2020, 16, e1007687.		0
25	Title is missing!. , 2020, 16, e1007687.		0
26	Title is missing!. , 2020, 16, e1007687.		0
27	Exploring the effects of BCG vaccination in patients diagnosed with tuberculosis: Observational study using the Enhanced Tuberculosis Surveillance system. Vaccine, 2019, 37, 5067-5072.	1.7	5
28	Preface to theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190375.	1.8	4
29	Detection, forecasting and control of infectious disease epidemics: modelling outbreaks in humans, animals and plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190038.	1.8	31
30	Social network analysis and whole genome sequencing in a cohort study to investigate TB transmission in an educational setting. BMC Infectious Diseases, 2019, 19, 154.	1.3	15
31	Estimating the effect of the 2005 change in BCG policy in England: a retrospective cohort study, 2000 to 2015. Eurosurveillance, 2019, 24, .	3.9	4
32	Rethinking tuberculosis control by targeting previously treated individuals. The Lancet Global Health, 2018, 6, e361-e362.	2.9	1
33	Defining the population attributable fraction for infectious diseases. International Journal of Epidemiology, 2017, 46, 976-982.	0.9	21
34	The perfect storm: incarceration and the high-risk environment perpetuating transmission of HIV, hepatitis C virus, and tuberculosis in Eastern Europe and Central Asia. Lancet, The, 2016, 388, 1228-1248.	6.3	213
35	The need for data science in epidemic modelling. Physics of Life Reviews, 2016, 18, 102-104.	1.5	2
36	Preserving privacy whilst maintaining robust epidemiological predictions. Epidemics, 2016, 17, 35-41.	1.5	7

#	Article	IF	CITATIONS
37	Epidemic predictions in an imperfect world: modelling disease spread with partial data. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150205.	1.2	27
38	Eliminating bovine tuberculosis in cattle and badgers: insight from a dynamic model. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150374.	1.2	28
39	A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature, 2014, 511, 228-231.	13.7	186
40	Age-dependent patterns of bovine tuberculosis in cattle. Veterinary Research, 2013, 44, 97.	1.1	57
41	Genetic Predisposition to Pass the Standard SICCT Test for Bovine Tuberculosis in British Cattle. PLoS ONE, 2013, 8, e58245.	1.1	20
42	Measured Dynamic Social Contact Patterns Explain the Spread of H1N1v Influenza. PLoS Computational Biology, 2012, 8, e1002425.	1.5	174
43	Using an online survey of healthcare-seeking behaviour to estimate the magnitude and severity of the 2009 H1N1v influenza epidemic in England. BMC Infectious Diseases, 2011, 11, 68.	1.3	91
44	Epidemiologic Inference From the Distribution of Tuberculosis Cases in Households in Lima, Peru. Journal of Infectious Diseases, 2011, 203, 1582-1589.	1.9	58
45	The Impact of Realistic Age Structure in Simple Models of Tuberculosis Transmission. PLoS ONE, 2010, 5, e8479.	1.1	36
46	Herd size and bovine tuberculosis persistence in cattle farms in Great Britain. Preventive Veterinary Medicine, 2009, 92, 360-365.	0.7	82
47	Modelling pooling strategies for SARS-CoV-2 testing in a university setting. Wellcome Open Research, 0, 6, 70.	0.9	2
48	Limits of lockdown: characterising essential contacts during strict physical distancing. Wellcome Open Research, 0, 6, 116.	0.9	2