James C Pramudita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5259330/publications.pdf

Version: 2024-02-01

567281 888059 17 1,482 15 17 citations h-index g-index papers 17 17 17 2583 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Na ₄ Co ₃ (PO ₄) ₂ P ₂ O ₇ through Correlative <i>Operando</i> X-ray Diffraction and Electrochemical Impedance Spectroscopy. Chemistry of Materials, 2019, 31, 5152-5159.	6.7	24
2	Activated Carbon from E-Waste Plastics as a Promising Anode for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 10310-10322.	6.7	41
3	Rate and Composition Dependence on the Structural–Electrochemical Relationships in P2–Na _{2/3} Fe _{1–<i>y</i>} Mn _{<i>y</i>} O ₂ Positive Electrodes for Sodium-Ion Batteries. Chemistry of Materials, 2018, 30, 7503-7510.	6.7	21
4	Correlating cycling history with structural evolution in commercial 26650 batteries using in operando neutron powder diffraction. Journal of Power Sources, 2017, 343, 446-457.	7.8	20
5	An Initial Review of the Status of Electrode Materials for Potassiumâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1602911.	19.5	854
6	Mechanisms of Sodium Insertion/Extraction on the Surface of Defective Graphenes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 431-438.	8.0	18
7	Potassium-ion intercalation in graphite within a potassium-ion battery examined using <i>in situ < /i> X-ray diffraction. Powder Diffraction, 2017, 32, S43-S48.</i>	0.2	31
8	The Na _{<i>x</i>} MoO ₂ Phase Diagram (¹ / ₂ ≠ <i>x</i> <)) Tj ETQq0	0 g gBT /Ove
9	Structure–Electrochemical Evolution of a Mn-Rich P2 Na _{2/3} Fe _{0.2} Mn _{0.8} O ₂ Na-Ion Battery Cathode. Chemistry of Materials, 2017, 29, 7416-7423.	6.7	58
10	Understanding the Behavior of LiCoO ₂ Cathodes at Extended Potentials in Ionic Liquid–Alkyl Carbonate Hybrid Electrolytes. Journal of Physical Chemistry C, 2017, 121, 15630-15638.	3.1	12
11	Sodium insertion/extraction from single-walled and multi-walled carbon nanotubes: The differences and similarities. Journal of Power Sources, 2016, 314, 102-108.	7.8	26
12	Crystallographic Evolution of P2 Na _{2/3} Fe _{0.4} Mn _{0.6} O ₂ Electrodes during Electrochemical Cycling. Chemistry of Materials, 2016, 28, 6342-6354.	6.7	69
13	The Unique Structural Evolution of the O3â€Phase Na _{2/3} Fe _{2/3} Mn _{1/3} O ₂ during High Rate Charge/Discharge: A Sodiumâ€Centred Perspective. Advanced Functional Materials, 2015, 25, 4994-5005.	14.9	66
14	Graphene and Selected Derivatives as Negative Electrodes in Sodium―and Lithium―on Batteries. ChemElectroChem, 2015, 2, 600-610.	3.4	46
15	Using in situ synchrotron x-ray diffraction to study lithium- and sodium-ion batteries: A case study with an unconventional battery electrode (Gd ₂ TiO ₅). Journal of Materials Research, 2015, 30, 381-389.	2.6	12
16	Rate Dependent Performance Related to Crystal Structure Evolution of Na _{0.67} Mn _{0.8} Mg _{0.2} O ₂ in a Sodium-Ion Battery. Chemistry of Materials, 2015, 27, 6976-6986.	6.7	97
17	Sodium uptake in cell construction and subsequent <i>in operando</i> electrode behaviour of Prussian blue analogues, Fe[Fe(CN) ₆] _{1â^x} · <i>y</i> H ₂ O and FeCo(CN) ₆ . Physical Chemistry Chemical Physics, 2014, 16, 24178-24187.	2.8	62