Arnaud Salvador

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5258496/publications.pdf

Version: 2024-02-01

172457 182427 2,741 67 29 51 citations h-index g-index papers 68 68 68 3762 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in Gammarus fossarum lipid composition. IScience, 2021, 24, 102115.	4.1	15
2	Streamlined Development of Targeted Mass Spectrometryâ€Based Method Combining Scoutâ€MRM and a Webâ€Based Tool Indexed with Scout Peptides. Proteomics, 2020, 20, 1900254.	2.2	7
3	From shotgun to targeted proteomics: rapid Scout-MRM assay development for monitoring potential immunomarkers in Dreissena polymorpha. Analytical and Bioanalytical Chemistry, 2020, 412, 7333-7347.	3.7	9
4	High-multiplexed monitoring of protein biomarkers in the sentinel Gammarus fossarum by targeted scout-MRM assay, a new vision for ecotoxicoproteomics. Journal of Proteomics, 2020, 226, 103901.	2.4	10
5	Scout-multiple reaction monitoring: A liquid chromatography tandem mass spectrometry approach for multi-residue pesticide analysis without time scheduling. Journal of Chromatography A, 2020, 1621, 461046.	3.7	9
6	Identification of immune-related proteins of Dreissena polymorpha hemocytes and plasma involved in host-microbe interactions by differential proteomics. Scientific Reports, 2020, 10, 6226.	3.3	14
7	In situ isobaric lipid mapping by MALDI–ion mobility separation–mass spectrometry imaging. Journal of Mass Spectrometry, 2020, 55, e4531.	1.6	35
8	The immune system of the freshwater zebra mussel, Dreissena polymorpha, decrypted by proteogenomics of hemocytes and plasma compartments. Journal of Proteomics, 2019, 202, 103366.	2.4	30
9	Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment. Journal of Proteomics, 2019, 198, 66-77.	2.4	66
10	On-Line Solid Phase Extraction Liquid Chromatography-Mass Spectrometry Method for Multiplexed Proteins Quantitation in an Ecotoxicology Test Specie: Gammarus fossarum. Journal of Applied Bioanalysis, 2018, 4, 81-101.	0.2	3
11	Multiplexed assay for protein quantitation in the invertebrate Gammarus fossarum by liquid chromatography coupled to tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 3969-3991.	3.7	17
12	Ecotoxico-Proteomics for Aquatic Environmental Monitoring: First in Situ Application of a New Proteomics-Based Multibiomarker Assay Using Caged Amphipods. Environmental Science & Emp; Technology, 2017, 51, 13417-13426.	10.0	32
13	Mussel as a Tool to Define Continental Watershed Quality. , 2017, , .		9
14	Liquid chromatography coupled to tandem mass spectrometry for the analysis of inositol hexaphosphate after solid-phase extraction. Journal of Liquid Chromatography and Related Technologies, 2016, 39, 408-414.	1.0	7
15	Identification and absolute quantification of enzymes in laundry detergents by liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 4669-4681.	3.7	6
16	Rapid Bacterial Identification, Resistance, Virulence and Type Profiling using Selected Reaction Monitoring Mass Spectrometry. Scientific Reports, 2015, 5, 13944.	3.3	66
17	Absolute quantification of dengue virus serotype 4 chimera vaccine candidate in Vero cell culture by targeted mass spectrometry. Proteomics, 2015, 15, 3320-3330.	2.2	6
18	Absolute quantification of podocalyxin, a potential biomarker of glomerular injury in human urine, by liquid chromatography–mass spectrometry. Journal of Chromatography A, 2015, 1397, 81-85.	3.7	10

#	Article	IF	CITATIONS
19	Next-Generation Proteomics: Toward Customized Biomarkers for Environmental Biomonitoring. Environmental Science & Environmental Environm	10.0	52
20	Comparative study of imazalil degradation in three systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8. Applied Catalysis B: Environmental, 2014, 144, 286-291.	20.2	91
21	Overcoming biofluid protein complexity during targeted mass spectrometry detection and quantification of protein biomarkers by MRM cubed (MRM3). Analytical and Bioanalytical Chemistry, 2014, 406, 1193-1200.	3.7	19
22	Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Science of the Total Environment, 2014, 472, 800-808.	8.0	400
23	Absolute quantification of podocin, a potential biomarker of glomerular injury in human urine, by liquid chromatography–multiple reaction monitoring cubed mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94, 84-91.	2.8	23
24	Implementing visible 473 nm photodissociation in a Q-Exactive mass spectrometer: towards specific detection of cysteine-containing peptides. Analyst, The, 2014, 139, 5523-5530.	3.5	17
25	Hydrophilic interaction liquid chromatography as second dimension in multidimensional chromatography with an anionic trapping strategy: Application to prostate-specific antigen quantification. Journal of Chromatography A, 2014, 1354, 75-84.	3.7	15
26	Combined collision-induced dissociation and photo-selected reaction monitoring mass spectrometry modes for simultaneous analysis of coagulation factors and estrogens. Journal of Pharmaceutical Analysis, 2014, 4, 183-189.	5. 3	2
27	Improved detection specificity for plasma proteins by targeting cysteine-containing peptides with photo-SRM. Analytical and Bioanalytical Chemistry, 2013, 405, 2321-2331.	3.7	32
28	Optimization of liquid chromatography–multiple reaction monitoring cubed mass spectrometry assay for protein quantification: Application to aquaporin-2 water channel in human urine. Journal of Chromatography A, 2013, 1301, 122-130.	3.7	27
29	Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: Kinetics, intermediates and degradation pathways. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 254, 35-44.	3.9	134
30	Development of a selective solid phase extraction method for nitro musk compounds in environmental waters using a molecularly imprinted sorbent. Talanta, 2013, 110, 128-134.	5.5	23
31	Degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid by TiO2 photocatalysis: Kinetics, photoproducts and comparison to structurally related compounds. Applied Catalysis B: Environmental, 2013, 140-141, 457-467.	20.2	49
32	Alternative Representation for the Stability Diagram of Quadrupole Ion Traps upon Additional Quadrupolar Excitation. European Journal of Mass Spectrometry, 2013, 19, 141-149.	1.0	4
33	Total ApoE and ApoE4 Isoform Assays in an Alzheimer's Disease Case-control Study by Targeted Mass Spectrometry (n = 669): A Pilot Assay for Methionine-containing Proteotypic Peptides. Molecular and Cellular Proteomics, 2012, 11, 1389-1403.	3.8	80
34	Vitellogenin-like proteins in the freshwater amphipod Gammarus fossarum (Koch, 1835): Functional characterization throughout reproductive process, potential for use as an indicator of oocyte quality and endocrine disruption biomarker in males. Aquatic Toxicology, 2012, 112-113, 72-82.	4.0	39
35	Vitellogenin-like protein measurement in caged Gammarus fossarum males as a biomarker of endocrine disruptor exposure: Inconclusive experience. Aquatic Toxicology, 2012, 122-123, 9-18.	4.0	30
36	Evaluation of hydrophilic interaction chromatography (HILIC) versus C18 reversed-phase chromatography for targeted quantification of peptides by mass spectrometry. Journal of Chromatography A, 2012, 1264, 31-39.	3.7	34

#	Article	IF	CITATIONS
37	Photocatalytic degradation of imazalil in an aqueous suspension of TiO2 and influence of alcohols on the degradation. Applied Catalysis B: Environmental, 2012, 126, 90-99.	20.2	56
38	Photochemical behaviour of propranolol in environmental waters: the hydroxylated photoproducts. International Journal of Environmental Analytical Chemistry, 2012, 92, 96-109.	3.3	8
39	Vitellogenin-like Proteins among Invertebrate Species Diversity: Potential of Proteomic Mass Spectrometry for Biomarker Development. Environmental Science & Environmental Sci	10.0	13
40	The current status of clinical proteomics and the use of MRM and MRM ³ for biomarker validation. Expert Review of Molecular Diagnostics, 2012, 12, 333-342.	3.1	44
41	Degradation intermediates and reaction pathway of pyraclostrobin with TiO2 photocatalysis. Applied Catalysis B: Environmental, 2012, 115-116, 285-293.	20.2	33
42	Photoâ€SRM: laserâ€induced dissociation improves detection selectivity of selected reaction monitoring mode. Rapid Communications in Mass Spectrometry, 2011, 25, 3375-3381.	1.5	19
43	Photocatalytic degradation of boscalid in aqueous titanium dioxide suspension: Identification of intermediates and degradation pathways. Applied Catalysis B: Environmental, 2010, 98, 122-131.	20.2	41
44	Mass spectrometry assay as an alternative to the enzyme-linked immunosorbent assay test for biomarker quantitation in ecotoxicology: Application to vitellogenin in Crustacea (Gammarus) Tj ETQq0 0 0 rgBT	/Œrlock	: 1 0 &f 50 457
45	Long-Lasting Enfuvirtide Carrier Pentasaccharide Conjugates with Potent Anti-Human Immunodeficiency Virus Type 1 Activity. Antimicrobial Agents and Chemotherapy, 2010, 54, 134-142.	3.2	31
46	Clinical Quantitation of Prostate-specific Antigen Biomarker in the Low Nanogram/Milliliter Range by Conventional Bore Liquid Chromatography-Tandem Mass Spectrometry (Multiple Reaction) Tj ETQq0 0 0 rgBT /O	verlock 10	O Tf 50 382 To
47	1006-1015. Sonodynamic Cytotoxicity In Controlled Cavitation Conditions., 2009,,.		0
48	Polysaccharides as a Marker for Detection of Corn Sugar Syrup Addition in Honey. Journal of Agricultural and Food Chemistry, 2009, 57, 2105-2111.	5.2	47
49	Multiple Reaction Monitoring Cubed for Protein Quantification at the Low Nanogram/Milliliter Level in Nondepleted Human Serum. Analytical Chemistry, 2009, 81, 9343-9352.	6.5	132
50	Identification of new O-GlcNAc modified proteins using a click-chemistry-based tagging. Analytical and Bioanalytical Chemistry, 2008, 390, 2089-2097.	3.7	63
51	Development and optimisation of a single extraction procedure for the LC/MS/MS analysis of two pharmaceutical classes residues in sewage treatment plant. Talanta, 2008, 74, 1463-1475.	5.5	74
52	Photolysis of Î ² -blockers in environmental waters. Chemosphere, 2008, 73, 1265-1271.	8.2	82
53	On-line solid-phase extraction with on-support derivatization for high-sensitivity liquid chromatography tandem mass spectrometry of estrogens in influent/effluent of wastewater treatment plants. Journal of Chromatography A, 2007, 1145, 102-109.	3.7	132
54	Liquid chromatography–tandem mass spectrometric determination of a new antibacterial agent (AVE6971) in human white blood cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 855, 173-179.	2.3	7

#	Article	IF	CITATIONS
55	Rapid Quantitation of Digoxin in Human Plasma and Urine Using Isotope Dilution Liquid Chromatographyâ€Tandem Mass Spectrometry. Journal of Liquid Chromatography and Related Technologies, 2006, 29, 1917-1932.	1.0	14
56	Simultaneous LC-MS-MS Analysis of Capecitabine and its Metabolites (5′-deoxy-5-fluorocytidine,) Tj ETQq0 0 2006, 63, 609-615.	0 rgBT /0 1.3	verlock 10 Tf 29
57	Glutathionylation Induces the Dissociation of 1-Cys D-peroxiredoxin Non-covalent Homodimer. Journal of Biological Chemistry, 2006, 281, 31736-31742.	3.4	67
58	Simultaneous determination of metronidazole and spiramycin I in human plasma, saliva and gingival crevicular fluid by LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 298-306.	2.8	55
59	Sensitive method for the quantitative determination of bromocriptine in human plasma by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 820, 237-242.	2.3	15
60	Chiral supercritical fluid chromatography on porous graphitic carbon using commercial dimethyl β-cyclodextrins as mobile phase additive. Journal of Chromatography A, 2001, 929, 101-112.	3.7	36
61	Structure elucidation of methylidene malonate 2.1.2 cyclic trimers with mass spectrometry, liquid chromatography and nuclear magnetic resonance investigations. Journal of Pharmaceutical and Biomedical Analysis, 2000, 22, 165-174.	2.8	1
62	Electrospray mass spectrometry and supercritical fluid chromatography of methylated β-cyclodextrins. Journal of Chromatography A, 1999, 855, 645-656.	3.7	25
63	Binding constant dependency of amphetamines with various commercial methylated \hat{l}^2 -cyclodextrins. Electrophoresis, 1999, 20, 2670-2679.	2.4	30
64	SFC with evaporative light-scattering detection and atmospheric-pressure chemical-ionisation mass spectrometry for methylated glucoses and cyclodextrins analysis. Analusis - European Journal of Analytical Chemistry, 1999, 27, 706-712.	0.4	12
65	Diastereoisomer separation of methylidene malonate 2.1.2 oligomerization products by liquid chromatography using a non-chiral stationary phase. Analytica Chimica Acta, 1998, 359, 57-64.	5.4	8
66	Subcritical fluid chromatography of monosaccharides and polyols using silica and trimethylsilyl columns. Journal of Chromatography A, 1997, 785, 195-204.	3.7	42
67	Analysis of partially methylated cyclodextrins by subcritical fluid and liquid chromatography. Journal of Chromatography A, 1996, 746, 103-108.	3.7	24