Naoji Matsuhisa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5257019/publications.pdf Version: 2024-02-01

Νλομ Μλτειιμικλ

#	Article	IF	CITATIONS
1	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	27.8	170
2	Emerging polymer electrets for transistor-structured memory devices and artificial synapses. Journal of Materials Chemistry C, 2022, 10, 13372-13394.	5.5	15
3	Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics, 2021, 4, 143-150.	26.0	170
4	A design strategy for high mobility stretchable polymer semiconductors. Nature Communications, 2021, 12, 3572.	12.8	94
5	Skin-like sensor systems by intrinsically stretchable electronic materials. , 2021, , .		0
6	An on-demand plant-based actuator created using conformable electrodes. Nature Electronics, 2021, 4, 134-142.	26.0	81
7	Metal–Ligand Based Mechanophores Enhance Both Mechanical Robustness and Electronic Performance of Polymer Semiconductors. Advanced Functional Materials, 2021, 31, 2009201.	14.9	30
8	High-frequency and intrinsically stretchable polymer diodes. Nature, 2021, 600, 246-252.	27.8	138
9	Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals. Advanced Functional Materials, 2020, 30, 1903100.	14.9	265
10	Artificial multimodal receptors based on ion relaxation dynamics. Science, 2020, 370, 961-965.	12.6	343
11	A Carbon Flower Based Flexible Pressure Sensor Made from Largeâ€Area Coating. Advanced Materials Interfaces, 2020, 7, 2000875.	3.7	23
12	An artificial sensory neuron with visual-haptic fusion. Nature Communications, 2020, 11, 4602.	12.8	166
13	Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nature Communications, 2020, 11, 2183.	12.8	47
14	A bioinspired stretchable membrane-based compliance sensor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11314-11320.	7.1	90
15	All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7063-7070.	7.1	110
16	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	26.0	421
17	Highâ€Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology. Advanced Electronic Materials, 2019, 5, 1900347.	5.1	70
18	Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers. Advanced Materials, 2019, 31, e1903912.	21.0	99

Ναομι Ματςυμικα

#	Article	IF	CITATIONS
19	Highly Durable Nanofiber-Reinforced Elastic Conductors for Skin-Tight Electronic Textiles. ACS Nano, 2019, 13, 7905-7912.	14.6	103
20	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-2966.	38.1	367
21	Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nature Communications, 2019, 10, 5384.	12.8	249
22	Modular and Reconfigurable Stretchable Electronic Systems. Advanced Materials Technologies, 2019, 4, 1800417.	5.8	42
23	Photocurrent Amplification in Bulk Heterojunction Organic Phototransistors with Different Donor–Acceptor Ratio. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700400.	2.4	6
24	Plasticizing Silk Protein for Onâ€5kin Stretchable Electrodes. Advanced Materials, 2018, 30, e1800129.	21.0	230
25	A Monolithically Processed Rectifying Pixel for Highâ€Resolution Organic Imagers. Advanced Electronic Materials, 2018, 4, 1700601.	5.1	22
26	Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2018, 30, e1706589.	21.0	349
27	Dual-gate organic phototransistor with high-gain and linear photoresponse. Nature Communications, 2018, 9, 4546.	12.8	76
28	A Highly Sensitive Capacitive-type Strain Sensor Using Wrinkled Ultrathin Gold Films. Nano Letters, 2018, 18, 5610-5617.	9.1	212
29	Lowâ€Power Monolithically Stacked Organic Photodiodeâ€Blocking Diode Imager by Turnâ€On Voltage Engineering. Advanced Electronic Materials, 2018, 4, 1800311.	5.1	18
30	Ultraflexible Nearâ€Infrared Organic Photodetectors for Conformal Photoplethysmogram Sensors. Advanced Materials, 2018, 30, e1802359.	21.0	171
31	An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology, 2018, 13, 1057-1065.	31.5	736
32	An Artificial Sensory Neuron with Tactile Perceptual Learning. Advanced Materials, 2018, 30, e1801291.	21.0	309
33	Sensors: A Monolithically Processed Rectifying Pixel for Highâ€Resolution Organic Imagers (Adv.) Tj ETQq1 1 0.7	84314 rgB	T <i> </i> Overlock 1
34	Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nature Materials, 2017, 16, 834-840.	27.5	578
35	Enhancing the Performance of Stretchable Conductors for Eâ€Textiles by Controlled Ink Permeation. Advanced Materials, 2017, 29, 1605848.	21.0	223
36	Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10554-10559.	7.1	201

Ναοji Ματsuhisa

#	Article	IF	CITATIONS
37	Ultraflexible Transparent Oxide/Metal/Oxide Stack Electrode with Low Sheet Resistance for Electrophysiological Measurements. ACS Applied Materials & Interfaces, 2017, 9, 34744-34750.	8.0	27
38	Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature Nanotechnology, 2017, 12, 907-913.	31.5	820
39	High Sensitivity Tuning of Work Function of Self-Assembled Monolayers Modified Electrodes Using Vacuum Ultraviolet Treatment. ACS Applied Materials & Interfaces, 2017, 9, 28151-28156.	8.0	7
40	Low operating voltage organic transistors and circuits with anodic titanium oxide and phosphonic acid self-assembled monolayer dielectrics. Organic Electronics, 2017, 40, 58-64.	2.6	36
41	Enhancement of Closed-Loop Gain of Organic Amplifiers Using Double Gate Structures. IEEE Electron Device Letters, 2016, , 1-1.	3.9	1
42	A Mechanically Durable and Flexible Organic Rectifying Diode with a Polyethylenimine Ethoxylated Cathode. Advanced Electronic Materials, 2016, 2, 1600259.	5.1	15
43	Integration of Organic Electrochemical and Fieldâ€Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays. Advanced Materials, 2016, 28, 9722-9728.	21.0	131
44	Field-Effect Transistors: Integration of Organic Electrochemical and Field-Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9869-9869.	21.0	2
45	Ultraflexible organic photonic skin. Science Advances, 2016, 2, e1501856.	10.3	788
46	Liquid Crystals: A Mechanically Durable and Flexible Organic Rectifying Diode with a Polyethylenimine Ethoxylated Cathode (Adv. Electron. Mater. 10/2016). Advanced Electronic Materials, 2016, 2, .	5.1	0
47	Vacuum Ultraviolet Treatment of Selfâ€Assembled Monolayers: A Tool for Understanding Growth and Tuning Charge Transport in Organic Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 2049-2054.	21.0	35
48	300â€nm Imperceptible, Ultraflexible, and Biocompatible e‣kin Fit with Tactile Sensors and Organic Transistors. Advanced Electronic Materials, 2016, 2, 1500452.	5.1	120
49	2.ã,¦āf«ãf^ãf©ãf•ãf¬ã,ã,•ãf–ãf«ãf»ã,¹ãf^ãf¬ãffãf€f£ãf–ãf«ã,»ãf³ã,µãf¼. Electrochemistry, 2016, 84,	1 6.4 -168.	0
50	An MRI-readable wireless flexible pressure sensor. , 2015, 2015, 3173-6.		2
51	Printable elastic conductors with a high conductivity for electronic textile applications. Nature Communications, 2015, 6, 7461.	12.8	677
52	Basic characteristics of implantable flexible pressure sensor for wireless readout using MRI. , 2014, 2014, 2014, 2338-41.		2
53	Ultrathin, short channel, thermally-stable organic transistors for neural interface systems. , 2014, , .		2
54	1 <formula formulatype="inline"><tex Notation="TeX">\$mu\$</tex </formula> m-Thickness Ultra-Flexible and High Electrode-Density Surface Electromyogram Measurement Sheet With 2 V Organic Transistors for Prosthetic Hand Control. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8, 824-833.	4.0	60