Anna Gazumyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5256371/publications.pdf

Version: 2024-02-01

76326 155660 13,507 55 40 citations h-index papers

g-index 71 71 71 19637 docs citations times ranked citing authors all docs

55

#	Article	IF	CITATIONS
1	Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, 584, 437-442.	27.8	1,742
2	Evolution of antibody immunity to SARS-CoV-2. Nature, 2021, 591, 639-644.	27.8	1,355
3	Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. ELife, 2020, 9, .	6.0	1,239
4	mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592, 616-622.	27.8	1,232
5	Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 2021, 595, 426-431.	27.8	610
6	Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. Journal of Experimental Medicine, 2020, 217, .	8.5	503
7	Enhanced SARS-CoV-2 neutralization by dimeric IgA. Science Translational Medicine, 2021, 13, .	12.4	379
8	Broadly Neutralizing Antibodies and Viral Inducers Decrease Rebound from HIV-1 Latent Reservoirs in Humanized Mice. Cell, 2014, 158, 989-999.	28.9	337
9	Enhanced clearance of HIV-1–infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science, 2016, 352, 1001-1004.	12.6	302
10	Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. Journal of Experimental Medicine, 2014, 211, 2061-2074.	8.5	297
11	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	8.5	283
12	A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature, 2016, 533, 105-109.	27.8	281
13	Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell, 2017, 169, 597-609.e11.	28.9	279
14	Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell, 2016, 166, 1445-1458.e12.	28.9	270
15	Early antibody therapy can induce long-lasting immunity to SHIV. Nature, 2017, 543, 559-563.	27.8	244
16	Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. Cell, 2015, 161, 1505-1515.	28.9	239
17	Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature, 2021, 600, 517-522.	27.8	239
18	B Cell Super-Enhancers and Regulatory Clusters Recruit AID Tumorigenic Activity. Cell, 2014, 159, 1524-1537.	28.9	234

#	Article	IF	CITATIONS
19	Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity, 2021, 54, 1853-1868.e7.	14.3	230
20	The microanatomic segregation of selection by apoptosis in the germinal center. Science, 2017, 358, .	12.6	204
21	Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature, 2022, 607, 128-134.	27.8	197
22	Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nature Structural and Molecular Biology, 2016, 23, 906-915.	8.2	188
23	Antibody Affinity Shapes the Choice between Memory and Germinal Center B Cell Fates. Cell, 2020, 183, 1298-1311.e11.	28.9	158
24	Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nature Protocols, 2016, 11, 1908-1923.	12.0	154
25	Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature, 2019, 570, 468-473.	27.8	145
26	Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency. Cell, 2016, 165, 1609-1620.	28.9	130
27	Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Science Translational Medicine, 2017, 9, .	12.4	128
28	Independent Roles of Switching and Hypermutation in the Development and Persistence of B Lymphocyte Memory. Immunity, 2016, 44, 769-781.	14.3	125
29	Improving Neutralization Potency and Breadth by Combining Broadly Reactive HIV-1 Antibodies Targeting Major Neutralization Epitopes. Journal of Virology, 2015, 89, 2659-2671.	3.4	123
30	Non-neutralizing Antibodies Alter the Course of HIV-1 Infection InÂVivo. Cell, 2017, 170, 637-648.e10.	28.9	111
31	A single injection of crystallizable fragment domain–modified antibodies elicits durable protection from SHIV infection. Nature Medicine, 2018, 24, 610-616.	30.7	94
32	Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity, 2022, 55, 998-1012.e8.	14.3	86
33	HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells. Journal of Experimental Medicine, 2019, 216, 1301-1310.	8.5	80
34	Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants. Journal of Experimental Medicine, 2014, 211, 2361-2372.	8.5	79
35	$Ig\hat{I}^2$ tyrosine residues contribute to the control of B cell receptor signaling by regulating receptor internalization. Journal of Experimental Medicine, 2006, 203, 1785-1794.	8.5	75
36	Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature, 2022, 606, 368-374.	27.8	75

3

#	Article	IF	Citations
37	A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Reports, 2018, 25, 1385-1394.e7.	6.4	61
38	Dynamic regulation of TFH selection during the germinal centre reaction. Nature, 2021, 591, 458-463.	27.8	58
39	Longitudinal clonal dynamics of HIV-1 latent reservoirs measured by combination quadruplex polymerase chain reaction and sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	52
40	A Combination of Human Broadly Neutralizing Antibodies against Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. Cell Host and Microbe, 2020, 28, 335-349.e6.	11.0	48
41	A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo. PLoS Pathogens, 2015, 11, e1005238.	4.7	43
42	Risk of Zika microcephaly correlates with features of maternal antibodies. Journal of Experimental Medicine, 2019, 216, 2302-2315.	8. 5	41
43	Amino-Terminal Phosphorylation of Activation-Induced Cytidine Deaminase Suppresses c- <i>myc/lgH</i> Translocation. Molecular and Cellular Biology, 2011, 31, 442-449.	2.3	39
44	An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex. Journal of Allergy and Clinical Immunology, 2015, 135, 998-1007.e6.	2.9	37
45	Activation-Induced Cytidine Deaminase in Antibody Diversification and Chromosome Translocation. Advances in Cancer Research, 2012, 113, 167-190.	5.0	35
46	The Chromatin Reader ZMYND8 Regulates Igh Enhancers to Promote Immunoglobulin Class Switch Recombination. Molecular Cell, 2018, 72, 636-649.e8.	9.7	34
47	Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. Science Translational Medicine, 2021, 13, eabk1533.	12.4	27
48	Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. Journal of Experimental Medicine, 2021, 218, .	8. 5	25
49	A combination of two human monoclonal antibodies limits fetal damage by Zika virus in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7981-7989.	7.1	24
50	An apoptosis-dependent checkpoint for autoimmunity in memory B and plasma cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24957-24963.	7.1	18
51	Durable protection against repeated penile exposures to simian-human immunodeficiency virus by broadly neutralizing antibodies. Nature Communications, 2020, 11, 3195.	12.8	15
52	A broadly neutralizing macaque monoclonal antibody against the HIV-1 V3-Glycan patch. ELife, 2020, 9, .	6.0	10
53	Antibody evolution to SARS-CoV-2 after single-dose Ad26.COV2.S vaccine in humans. Journal of Experimental Medicine, 2022, 219, .	8.5	10
54	Broadly neutralizing antibody-mediated protection of macaques against repeated intravenous exposures to simian-human immunodeficiency virus. Aids, 2021, 35, 1567-1574.	2.2	6

#	Article	IF	CITATIONS
55	Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. Journal of Experimental Medicine, 2022, 219, .	8.5	6