List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5255715/publications.pdf Version: 2024-02-01

CRAHAM LKINC

#	Article	IF	CITATIONS
1	BRAD V3.0: an upgraded Brassicaceae database. Nucleic Acids Research, 2022, 50, D1432-D1441.	6.5	89
2	Transposable element insertion: a hidden major source of domesticated phenotypic variation in <i>Brassica rapa</i> . Plant Biotechnology Journal, 2022, 20, 1298-1310.	4.1	29
3	Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective. Journal of Agricultural and Food Chemistry, 2022, 70, 3375-3390.	2.4	3
4	Development of Selection Indices for Improvement of Seed Yield and Lipid Composition in Bambara Groundnut (Vigna subterranea (L.) Verdc.). Foods, 2022, 11, 86.	1.9	3
5	Systematic trait dissection in oilseed rape provides a comprehensive view, further insight, and exact roadmap for yield determination. , 2022, 15, 38.		1
6	Challenges for FAIR-compliant description and comparison of crop phenotype data with standardized controlled vocabularies. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	1.4	4
7	On the Role of Transposable Elements in the Regulation of Gene Expression and Subgenomic Interactions in Crop Genomes. Critical Reviews in Plant Sciences, 2021, 40, 157-189.	2.7	28
8	Magnesium and calcium overaccumulate in the leaves of a <i>schengen3</i> mutant of <i>Brassica rapa</i> . Plant Physiology, 2021, 186, 1616-1631.	2.3	11
9	Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Communications Biology, 2021, 4, 537.	2.0	21
10	Genome structural evolution in Brassica crops. Nature Plants, 2021, 7, 757-765.	4.7	31
11	Functional homoeologous alleles of CONSTANS contribute to seasonal crop type in rapeseed. Theoretical and Applied Genetics, 2021, 134, 3287-3303.	1.8	6
12	Modelling of gene loss propensity in the pangenomes of three <i>Brassica</i> species suggests different mechanisms between polyploids and diploids. Plant Biotechnology Journal, 2021, 19, 2488-2500.	4.1	44
13	Integrating a genome-wide association study with transcriptomic data to predict candidate genes and favourable haplotypes influencing <i>Brassica napus</i> seed phytate. DNA Research, 2021, 28, .	1.5	14
14	A Systematic Approach to Defining Nutritional Quality of Underutilised Crops. Proceedings (mdpi), 2020, 36, .	0.2	0
15	Genetic Elucidation of Glucosinolates in a Diverse Collection of Indian Mustard (Brassica juncea L.). Proceedings (mdpi), 2020, 36, .	0.2	0
16	Characteristics of the Underutilised Pulse Bambara Groundnut (Vigna subterranea (L.) Verdc.) Relevant to Food & Nutritional Security. Proceedings (mdpi), 2020, 36, .	0.2	4
17	Genetic and signalling pathways of dry fruit size: targets for genome editingâ€based crop improvement. Plant Biotechnology Journal, 2020, 18, 1124-1140	4.1	40
18	Bridging the food security gap: an informationâ€led approach to connect dietary nutrition, food composition and crop production. Journal of the Science of Food and Agriculture, 2020, 100, 1495-1504.	1.7	10

#	Article	IF	CITATIONS
19	Chromosome-Scale Assembly and Annotation of the Macadamia Genome (<i>Macadamia integrifolia</i>) Tj ET	Qq1 <u>1</u> 0.78	4314 rgBT /(
20	An extreme-phenotype genomeâ€wide association study identifies candidate cannabinoid pathway genes in Cannabis. Scientific Reports, 2020, 10, 18643.	1.6	17
21	Alternatively Spliced BnaPAP2.A7 Isoforms Play Opposing Roles in Anthocyanin Biosynthesis of Brassica napus L Frontiers in Plant Science, 2020, 11, 983.	1.7	23
22	Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. Journal of Experimental Botany, 2020, 71, 4729-4741.	2.4	32
23	Abundant expression of maternal siRNAs is a conserved feature of seed development. Proceedings of the United States of America, 2020, 117, 15305-15315.	3.3	49
24	Maximising recombination across macadamia populations to generate linkage maps for genome anchoring. Scientific Reports, 2020, 10, 5048.	1.6	8
25	Knowledge representation and data sharing to unlock crop variation for nutritional food security. Crop Science, 2020, 60, 516-529.	0.8	7
26	Enabling reusability of plant phenomic datasets with MIAPPE 1.1. New Phytologist, 2020, 227, 260-273.	3.5	84
27	Identification, characterization and epitope mapping of proteins encoded by putative allergenic napin genes from <i>Brassica rapa</i> . Clinical and Experimental Allergy, 2020, 50, 848-868.	1.4	13
28	Complex Patterns of Cannabinoid Alkyl Side-Chain Inheritance in Cannabis. Scientific Reports, 2019, 9, 11421.	1.6	14
29	Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study. PLoS ONE, 2019, 14, e0221578.	1.1	20
30	Oilseed rape (Brassica napus) resistance to growth of Leptosphaeria maculans in leaves of young plants contributes to quantitative resistance in stems of adult plants. PLoS ONE, 2019, 14, e0222540.	1.1	15
31	A <scp>CACTA</scp> â€like transposable element in the upstream region of <i>BnaA9</i> . <i><scp>CYP</scp>78A9</i> acts as an enhancer to increase silique length and seed weight in rapeseed. Plant Journal, 2019, 98, 524-539.	2.8	77
32	Remobilization and fate of sulphur in mustard. Annals of Botany, 2019, 124, 471-480.	1.4	14
33	DNA paternity testing indicates unexpectedly high levels of self-fertilisation in macadamia. Tree Genetics and Genomes, 2019, 15, 1.	0.6	16
34	Developing Robust Standardised Analytical Procedures for Cannabinoid Quantification: Laying the Foundations for an Emerging Cannabis-Based Pharmaceutical Industry. Medical Cannabis and Cannabinoids, 2019, 2, 1-13.	1.2	8
35	Seed glucosinolate yield is maximized by higher rates of sulfur nutrition than required for seed yield in condiment mustard (Brassica juncea L.). PLoS ONE, 2019, 14, e0213429.	1.1	6
36	Genomeâ€wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnology Journal, 2019, 17, 1998-2010.	4.1	54

#	Article	IF	CITATIONS
37	Remobilisation and Fate of Sulphur in Indian Mustard (Brassica juncea. L). Proceedings (mdpi), 2019, 36, 26.	0.2	0
38	The potential of the underutilized pulse bambara groundnut (Vigna subterranea (L.) Verdc.) for nutritional food security. Journal of Food Composition and Analysis, 2019, 77, 47-59.	1.9	81
39	Black salve composition: An evaluation of the potential for normal tissue toxicity and treatment failure from black salve products. Journal of Herbal Medicine, 2019, 15, 100246.	1.0	2
40	An auxin signaling gene <i>BnaA3</i> . <i><scp>IAA</scp>7</i> contributes to improved plant architecture and yield heterosis in rapeseed. New Phytologist, 2019, 222, 837-851.	3.5	80
41	Maternal components of <scp>RNA</scp> â€directed <scp>DNA</scp> methylation are required for seed development in <i>Brassica rapa</i> . Plant Journal, 2018, 94, 575-582.	2.8	72
42	Assessing the risk of epidemic dropsy from black salve use. Journal of Applied Toxicology, 2018, 38, 1274-1281.	1.4	5
43	Dissection of the genetic architecture of three seedâ€quality traits and consequences for breeding in <i>Brassica napus</i> . Plant Biotechnology Journal, 2018, 16, 1336-1348.	4.1	91
44	Sequence variation and functional analysis of a FRIGIDA orthologue (BnaA3.FRI) in Brassica napus. BMC Plant Biology, 2018, 18, 32.	1.6	24
45	A sibling pair with cardiofaciocutaneous syndrome (CFC) secondary to BRAF mutation with unaffected parents—the first cases of gonadal mosaicism in CFC?. American Journal of Medical Genetics, Part A, 2018, 176, 1637-1640.	0.7	2
46	Annotation of the Corymbia terpene synthase gene family shows broad conservation but dynamic evolution of physical clusters relative to Eucalyptus. Heredity, 2018, 121, 87-104.	1.2	17
47	Genetic Properties of a Nested Association Mapping Population Constructed With Semi-Winter and Spring Oilseed Rapes. Frontiers in Plant Science, 2018, 9, 1740.	1.7	29
48	Developmental Plasticity of the Major Alkyl Cannabinoid Chemotypes in a Diverse Cannabis Genetic Resource Collection. Frontiers in Plant Science, 2018, 9, 1510.	1.7	16
49	Brassica napus Genomic Resources. Compendium of Plant Genomes, 2018, , 233-244.	0.3	3
50	A comprehensive and precise set of intervarietal substitution lines to identify candidate genes and quantitative trait loci in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2018, 131, 2117-2129.	1.8	5
51	Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid <i>Brassica napus</i> . Plant Biotechnology Journal, 2018, 16, 1265-1274.	4.1	217
52	Assembly and comparison of two closely related <i>Brassica napus</i> genomes. Plant Biotechnology Journal, 2017, 15, 1602-1610.	4.1	150
53	Breeding histories and selection criteria for oilseed rape in Europe and China identified by genome wide pedigree dissection. Scientific Reports, 2017, 7, 1916.	1.6	16
54	Carcinogenic potential of sanguinarine, a phytochemical used in â€~therapeutic' black salve and mouthwash. Mutation Research - Reviews in Mutation Research, 2017, 774, 46-56.	2.4	29

#	Article	IF	CITATIONS
55	Genome evolutionary dynamics followed by diversifying selection explains the complexity of the Sesamum indicum genome. BMC Genomics, 2017, 18, 257.	1.2	17
56	Genome-Wide Identification and Characterization of the Aquaporin Gene Family and Transcriptional Responses to Boron Deficiency in Brassica napus. Frontiers in Plant Science, 2017, 8, 1336.	1.7	54
57	Genotypic Variation in Wheat Flour Lysophospholipids. Molecules, 2017, 22, 909.	1.7	4
58	Development of a Statistical Crop Model to Explain the Relationship between Seed Yield and Phenotypic Diversity within the Brassica napus Genepool. Agronomy, 2017, 7, 31.	1.3	13
59	A Review of Black Salve: Cancer Specificity, Cure, and Cosmesis. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-11.	0.5	12
60	Geospatial binding for transdisciplinary research in crop science: the GRASPgfs initiative. Open Geospatial Data, Software and Standards, 2017, 2, .	4.3	5
61	Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.). BMC Plant Biology, 2017, 17, 204.	1.6	32
62	Introducing the Brassica Information Portal: Towards integrating genotypic and phenotypic Brassica crop data. F1000Research, 2017, 6, 465.	0.8	16
63	Introducing the Brassica Information Portal: Towards integrating genotypic and phenotypic Brassica crop data. F1000Research, 2017, 6, 465.	0.8	10
64	Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses. International Journal of Molecular Sciences, 2016, 17, 1414.	1.8	72
65	Evaluation of Linkage Disequilibrium Pattern and Association Study on Seed Oil Content in Brassica napus Using ddRAD Sequencing. PLoS ONE, 2016, 11, e0146383.	1.1	63
66	A Belated Green Revolution for Cannabis: Virtual Genetic Resources to Fast-Track Cultivar Development. Frontiers in Plant Science, 2016, 7, 1113.	1.7	65
67	Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. Frontiers in Plant Science, 2016, 7, 1735.	1.7	35
68	QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Scientific Reports, 2016, 6, 33113.	1.6	55
69	Genome and transcriptome sequencing characterises the gene space of Macadamia integrifolia (Proteaceae). BMC Genomics, 2016, 17, 937.	1.2	45
70	Identification of environmentally stable QTL for resistance against Leptosphaeria maculans in oilseed rape (Brassica napus). Theoretical and Applied Genetics, 2016, 129, 169-180.	1.8	60
71	Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica, 2016, 208, 463-475.	0.6	68
72	Perturbation of nutrient source–sink relationships by postâ€anthesis stresses results in differential accumulation of nutrients in wheat grain. Journal of Plant Nutrition and Soil Science, 2015, 178, 89-98.	1.1	30

#	Article	IF	CITATIONS
73	Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution. Frontiers in Plant Science, 2015, 6, 836.	1.7	52
74	Crop epigenetics and the molecular hardware of genotype × environment interactions. Frontiers in Plant Science, 2015, 6, 968.	1.7	20
75	Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility. Theoretical and Applied Genetics, 2015, 128, 107-118.	1.8	41
76	Disruption of a <i><scp>CAROTENOID CLEAVAGE DIOXYGENASE</scp> 4</i> gene converts flower colour from white to yellow in <i>Brassica</i> species. New Phytologist, 2015, 206, 1513-1526.	3.5	155
77	Assessing Quantitative Resistance against Leptosphaeria maculans (Phoma Stem Canker) in Brassica napus (Oilseed Rape) in Young Plants. PLoS ONE, 2014, 9, e84924.	1.1	40
78	Complete chloroplast genome of Macadamia integrifoliaconfirms the position of the Gondwanan early-diverging eudicot family Proteaceae. BMC Genomics, 2014, 15, S13.	1.2	39
79	Genetical and Comparative Genomics of <i>Brassica</i> under Altered Ca Supply Identifies <i>Arabidopsis</i> Ca-Transporter Orthologs Â. Plant Cell, 2014, 26, 2818-2830.	3.1	40
80	Sustainable harvest: managing plasticity for resilient crops. Plant Biotechnology Journal, 2014, 12, 517-533.	4.1	34
81	Whole genome shotgun sequences for microsatellite discovery and application in cultivated and wild <i>Macadamia</i> (Proteaceae). Applications in Plant Sciences, 2014, 2, 1300089.	0.8	29
82	Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theoretical and Applied Genetics, 2014, 127, 1817-1829.	1.8	60
83	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	6.0	2,089
84	Determination of Starch Lysophospholipids in Rice Using Liquid Chromatography–Mass Spectrometry (LC-MS). Journal of Agricultural and Food Chemistry, 2014, 62, 6600-6607.	2.4	53
85	Genotypic Variation in Lysophospholipids of Milled Rice. Journal of Agricultural and Food Chemistry, 2014, 62, 9353-9361.	2.4	17
86	The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5, 3930.	5.8	918
87	Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology, 2014, 15, R77.	13.9	456
88	Phospholipids in rice: Significance in grain quality and health benefits: A review. Food Chemistry, 2013, 139, 1133-1145.	4.2	108
89	High-Throughput Sequencing and Mutagenesis to Accelerate the Domestication of Microlaena stipoides as a New Food Crop. PLoS ONE, 2013, 8, e82641.	1.1	43

6

#	Article	IF	CITATIONS
91	Seed colour loci, homoeology and linkage groups of the C genome chromosomes revealed in Brassica rapa-B. oleracea monosomic alien addition lines. Annals of Botany, 2012, 109, 1227-1242.	1.4	29
92	High-Resolution Mapping of a Fruit Firmness-Related Quantitative Trait Locus in Tomato Reveals Epistatic Interactions Associated with a Complex Combinatorial Locus Â. Plant Physiology, 2012, 159, 1644-1657.	2.3	83
93	Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply. Annals of Botany, 2012, 109, 1081-1089.	1.4	43
94	Three-point appraisal of genetic linkage maps. Theoretical and Applied Genetics, 2012, 125, 1393-1402.	1.8	1
95	A Hypomethylated population of Brassica rapa for forward and reverse Epi-genetics. BMC Plant Biology, 2012, 12, 193.	1.6	64
96	Assigning Brassica microsatellite markers to the nine C-genome chromosomes using Brassica rapa var. trilocularis–B. oleracea var. alboglabra monosomic alien addition lines. Theoretical and Applied Genetics, 2012, 125, 455-466.	1.8	20
97	Effects of <i>R</i> geneâ€mediated resistance in <i>Brassica napus</i> (oilseed rape) on asexual and sexual sporulation of <i>Pyrenopeziza brassicae</i> (light leaf spot). Plant Pathology, 2012, 61, 543-554.	1.2	12
98	InterStoreDB: A Generic Integration Resource for Genetic and Genomic Data ^F . Journal of Integrative Plant Biology, 2012, 54, 345-355.	4.1	13
99	Parental genome imbalance in <i>Brassica oleracea</i> causes asymmetric triploid block. Plant Journal, 2012, 71, 503-516.	2.8	48
100	Promoter Variation and Transcript Divergence in Brassicaceae Lineages of FLOWERING LOCUS T. PLoS ONE, 2012, 7, e47127.	1.1	37
101	Effects of fungicide on growth of <i>Leptosphaeria maculans</i> and <i>L.Âbiglobosa</i> in relation to development of phoma stem canker on oilseed rape (<i>Brassica napus</i>). Plant Pathology, 2011, 60, 607-620.	1.2	23
102	Generation of nonvernalâ€obligate, fasterâ€cycling <i>Noccaea caerulescens</i> lines through fast neutron mutagenesis. New Phytologist, 2011, 189, 409-414.	3.5	10
103	Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics, 2011, 12, 101.	1.2	125
104	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	9.4	1,893
105	Universal endogenous gene controls for bisulphite conversion in analysis of plant DNA methylation. Plant Methods, 2011, 7, 39.	1.9	15
106	High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods, 2011, 7, 43.	1.9	79
107	Epigenetic QTL Mapping in <i>Brassica napus</i> . Genetics, 2011, 189, 1093-1102.	1.2	71
108	Regulatory Hotspots Are Associated with Plant Gene Expression under Varying Soil Phosphorus Supply in <i>Brassica rapa</i> Â Â Â. Plant Physiology, 2011, 156, 1230-1241.	2.3	60

#	Article	IF	CITATIONS
109	A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria×ananassa Duch.) fruit, a non-climacteric tissue*. Journal of Experimental Botany, 2011, 62, 1179-1188.	2.4	174
110	Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens. PLoS ONE, 2011, 6, e17814.	1.1	112
111	Shoot zinc (Zn) concentration varies widely within <i>Brassica oleracea</i> L. and is affected by soil Zn and phosphorus (P) levels. Journal of Horticultural Science and Biotechnology, 2010, 85, 375-380.	0.9	42
112	Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. Theoretical and Applied Genetics, 2010, 120, 1597-1610.	1.8	24
113	A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple (Malus) Tj ETQq1 1 0.7	784314 rgl 0.6	3T /Qverlock
114	Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics, 2010, 11, 594.	1.2	78
115	Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biology, 2010, 10, 54.	1.6	202
116	A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biology, 2010, 10, 62.	1.6	149
117	The first meiosis of resynthesized <i>Brassica napus</i> , a genome blender. New Phytologist, 2010, 186, 102-112.	3.5	267
118	A Brassica Exon Array for Whole-Transcript Gene Expression Profiling. PLoS ONE, 2010, 5, e12812.	1.1	27
119	Exploring and exploiting epigenetic variation in cropsThis article is one of a selection of papers from the conference "Exploiting Genome-wide Association in Oilseed Brassicas: a model for genetic improvement of major OECD crops for sustainable farmingâ€. Genome, 2010, 53, 856-868.	0.9	35
120	Genetic analysis of potassium use efficiency in Brassica oleracea. Annals of Botany, 2010, 105, 1199-1210.	1.4	54
121	A SQUAMOSA MADS Box Gene Involved in the Regulation of Anthocyanin Accumulation in Bilberry Fruits Â. Plant Physiology, 2010, 153, 1619-1629.	2.3	232
122	The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evolutionary Biology, 2009, 9, 271.	3.2	86
123	Quantitative resistance to symptomless growth of <i>Leptosphaeria maculans</i> (phoma stem canker) in <i> Brassica napus</i> (oilseed rape). Plant Pathology, 2009, 58, 314-323.	1.2	65
124	Rapeseed cytoplasm gives advantage in wild relatives and complicates genetically modified crop biocontainment. New Phytologist, 2009, 183, 1201-1211.	3.5	27
125	Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. Journal of Experimental Botany, 2009, 60, 1953-1968.	2.4	278
126	Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica, 2008, 164, 509-514.	0.6	46

#	Article	IF	CITATIONS
127	A functional genomics resource for <i>Brassica napus</i> : development of an EMS mutagenized population and discovery of <i>FAE1</i> point mutations by TILLING. New Phytologist, 2008, 180, 751-765.	3.5	165
128	The CACTA transposon <i>Bot1</i> played a major role in <i>Brassica</i> genome divergence and gene proliferation. Plant Journal, 2008, 56, 1030-1044.	2.8	75
129	Genetics and epigenetics of fruit development and ripening. Current Opinion in Plant Biology, 2008, 11, 58-63.	3.5	136
130	Standardized gene nomenclature for the Brassica genus. Plant Methods, 2008, 4, 10.	1.9	130
131	A and C Genome Distinction and Chromosome Identification in <i>Brassica napus</i> by Sequential Fluorescence <i>in Situ</i> Hybridization and Genomic <i>in Situ</i> Hybridization. Genetics, 2008, 180, 1849-1857.	1.2	78
132	Shoot Calcium and Magnesium Concentrations Differ between Subtaxa, Are Highly Heritable, and Associate with Potentially Pleiotropic Loci in <i>Brassica oleracea</i> Â Â Â. Plant Physiology, 2008, 146, 1707-1720.	2.3	107
133	Novel Insights into Seed Fatty Acid Synthesis and Modification Pathways from Genetic Diversity and Quantitative Trait Loci Analysis of the Brassica C Genome. Plant Physiology, 2007, 144, 1827-1842.	2.3	78
134	Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (nÂ=Â9) wild relatives. Theoretical and Applied Genetics, 2007, 114, 609-618.	1.8	55
135	Detection and resolution of genetic loci affecting circadian period in Brassica oleracea. Theoretical and Applied Genetics, 2007, 114, 683-692.	1.8	21
136	The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theoretical and Applied Genetics, 2007, 115, 777-792.	1.8	160
137	Fitness of hybrids between rapeseed (<i>Brassica napus</i>) and wild <i>Brassica rapa</i> in natural habitats. Molecular Ecology, 2006, 15, 1175-1184.	2.0	65
138	A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 2006, 38, 948-952.	9.4	1,076
139	A Sequence-Tagged Linkage Map of Brassica rapa. Genetics, 2006, 174, 29-39.	1.2	140
140	Utilization of Arabidopsis and Brassica Genomic Resources to Underpin Genetic Analysis and Improvement of Brassica Crops. , 2006, , 33-69.		1
141	Relationships between water-use traits and photosynthesis in Brassica oleracea resolved by quantitative genetic analysis. Plant Breeding, 2005, 124, 557-564.	1.0	59
142	The Genomic Organization of Retrotransposons in Brassica oleracea. Plant Molecular Biology, 2005, 59, 839-851.	2.0	40
143	Physical organization of the major duplication on Brassica oleracea chromosome O6 revealed through fluorescence in situ hybridization with Arabidopsis and Brassica BAC probes. Genome, 2005, 48, 1093-1103.	0.9	30
144	Identification and characterization of QTL controlling Agrobacterium-mediated transient and stable transformation of Brassica oleracea. Plant Biotechnology Journal, 2004, 2, 59-69.	4.1	14

#	Article	IF	CITATIONS
145	Bioinformatics: harvesting information for plant and crop science. Seminars in Cell and Developmental Biology, 2004, 15, 721-731.	2.3	3
146	A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theoretical and Applied Genetics, 2003, 106, 819-825.	1.8	199
147	Genetic analysis of the bracting trait in cauliflower and broccoli. Plant Science, 2003, 164, 803-808.	1.7	15
148	Resolving the aphid resistance locusSd-1 on a BAC contig within a sub-telomeric region ofMaluslinkage group 7. Genome, 2002, 45, 939-945.	0.9	33
149	Genetic identification and genomic organization of factors affecting fruit texture. Journal of Experimental Botany, 2002, 53, 2065-2071.	2.4	107
150	Inheritance of Race-Specific Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. Phytopathology, 2002, 92, 1134-1141.	1.1	69
151	High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp Theoretical and Applied Genetics, 2002, 105, 346-354.	1.8	54
152	Identification of genetic factors controlling the efficiency of Agrobacterium rhizogenes-mediated transformation in Brassica oleracea by QTL analysis. Theoretical and Applied Genetics, 2002, 105, 568-576.	1.8	18
153	Identification of quantitative trait loci controlling developmental characteristics of Brassica oleracea L Theoretical and Applied Genetics, 2002, 104, 601-609.	1.8	44
154	Genetic analysis and FISH mapping of the Colourless non-ripening locus of tomato. Theoretical and Applied Genetics, 2002, 104, 165-170.	1.8	15
155	Through a genome, darkly: comparative analysis of plant chromosomal DNA. Plant Molecular Biology, 2002, 48, 5-20.	2.0	23
156	Integration of the Cytogenetic and Genetic Linkage Maps of <i>Brassica oleracea</i> . Genetics, 2002, 161, 1225-1234.	1.2	108
157	Through a genome, darkly: comparative analysis of plant chromosomal DNA. , 2002, , 5-20.		Ο
158	Through a genome, darkly: comparative analysis of plant chromosomal DNA. Plant Molecular Biology, 2002, 48, 5-20.	2.0	9
159	Quick on the Uptake: Characterization of a Family of Plant Auxin Influx Carriers. Journal of Plant Growth Regulation, 2001, 20, 217-225.	2.8	101
160	Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theoretical and Applied Genetics, 2001, 102, 1227-1235.	1.8	72
161	Characterisation of disease resistance gene-like sequences in Brassica oleracea L Theoretical and Applied Genetics, 2001, 102, 555-563.	1.8	31
162	Realistic image synthesis of plant structures for genetic analysis. Image and Vision Computing, 2001, 19, 517-522.	2.7	6

GRAHAM J KING

#	Article	IF	CITATIONS
163	Contrasting genome organisation: two regions of the <i>Brassica oleracea</i> genome compared with collinear regions of the <i>Arabidopsis thaliana</i> genome. Genome, 2001, 44, 808-817.	0.9	22
164	Quantitative genetic analysis of seed vigour and preâ€emergence seedling growth traits in Brassica oleracea. New Phytologist, 2000, 148, 277-286.	3.5	95
165	Title is missing!. , 2000, 6, 603-613.		77
166	An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theoretical and Applied Genetics, 2000, 100, 75-81.	1.8	130
167	Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theoretical and Applied Genetics, 2000, 100, 1074-1084.	1.8	119
168	Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theoretical and Applied Genetics, 2000, 101, 421-428.	1.8	286
169	Introgression of the Vf source of scab resistance and distribution of linked marker alleles within the Malus gene pool. Theoretical and Applied Genetics, 1999, 99, 1039-1046.	1.8	28
170	Multiple field and glasshouse assessments increase the reliability of linkage mapping of the Vf source of scab resistance in apple. Theoretical and Applied Genetics, 1998, 96, 699-708.	1.8	34
171	Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theoretical and Applied Genetics, 1998, 97, 60-73.	1.8	391
172	IDENTIFICATION AND DEVELOPMENT OF MARKERS LINKED TO APHID RESISTANCE IN APPLE. Acta Horticulturae, 1998, , 519-522.	0.1	0
173	RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theoretical and Applied Genetics, 1997, 94, 528-533.	1.8	63

PATTERNS OF GENETIC DIVERSITY AND RELATIONSHIPS BETWEEN REGIONAL GROUPS AND POPULATIONS OF

174

GRAHAM J KING

#	Article	IF	CITATIONS
181	Development of a method for the identification of S alleles in Brassica oleracea based on digestion of PCR-amplified DNA with restriction endonucleases. Sexual Plant Reproduction, 1993, 6, 133.	2.2	48
182	Stability, structure and complexity of yeast chromosome III. Nucleic Acids Research, 1993, 21, 4239-4245.	6.5	15
183	Mapping Genes in Apple: the Future for Molecular-Aided Breeding. Outlook on Agriculture, 1992, 21, 163-168.	1.8	2
184	Strategy and techniques for mapping horticultural genomes. Phytoparasitica, 1992, 20, S93-S97.	0.6	0
185	The â€~European Apple Genome Mapping Project'-developing a strategy for mapping genes coding for agronomic characters in tree species. Euphytica, 1991, 56, 89-94.	0.6	46
186	Molecular genetics and breeding of vegetable brassicas. Euphytica, 1990, 50, 97-112.	0.6	16
187	A taxometric analysis of seed proteins in the genusBriza s. l. (Poaceae). Plant Systematics and Evolution, 1986, 151, 163-174.	0.3	4
188	Establishing a Common Nutritional Vocabulary - From Food Production to Diet. Frontiers in Nutrition, 0, 9, .	1.6	6