Randy P Sabatini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5255635/publications.pdf

Version: 2024-02-01

46 papers

6,240 citations

236925 25 h-index 233421 45 g-index

46 all docs

46 docs citations

times ranked

46

7905 citing authors

#	Article	IF	Citations
1	The Impact of Ion Migration on the Electroâ€Optic Effect in Hybrid Organic–Inorganic Perovskites. Advanced Functional Materials, 2022, 32, 2107939.	14.9	7
2	Precursor Tailoring Enables Alkylammonium Tin Halide Perovskite Phosphors for Solidâ€State Lighting. Advanced Functional Materials, 2022, 32, .	14.9	17
3	Dualâ€Phase Regulation for Highâ€Efficiency Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	14.9	33
4	In Situ Inorganic Ligand Replenishment Enables Bandgap Stability in Mixedâ€Halide Perovskite Quantum Dot Solids. Advanced Materials, 2022, 34, e2200854.	21.0	82
5	Singleâ€Layer Sheets of Alkylammonium Lead Iodide Perovskites with Tunable and Stable Green Emission for White Lightâ€Emitting Devices. Advanced Optical Materials, 2022, 10, .	7.3	2
6	Solution Epitaxy of Halide Perovskite Thin Single Crystals for Stable Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37840-37848.	8.0	6
7	Pentacene–Bridge Interactions in an Axially Chiral Binaphthyl Pentacene Dimer. Journal of Physical Chemistry A, 2021, 125, 7226-7234.	2.5	7
8	Magnetic optical rotary dispersion and magnetic circular dichroism in methylammonium lead halide perovskites. Chirality, 2021, 33, 610-617.	2.6	8
9	Fluorescence Enhancement through Confined Oligomerization in Nanochannels: An Anthryl Oligomer in a Metal-Organic Framework. , 2021, 3, 1599-1604.		4
10	Achromatic polarization control in the visible. Nature Photonics, 2021, 15, 797-799.	31.4	1
11	Improved optical confinement in ambipolar field-effect transistors toward electrical injection organic lasers. Applied Physics Letters, 2021, 119, 163303.	3.3	1
12	Rigid Conjugated Diamine Templates for Stable Dion–Jacobson-Type Two-Dimensional Perovskites. Journal of the American Chemical Society, 2021, 143, 19901-19908.	13.7	39
13	Bound State in the Continuum in Nanoantenna-Coupled Slab Waveguide Enables Low-Threshold Quantum-Dot Lasing. Nano Letters, 2021, 21, 9754-9760.	9.1	30
14	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	12.8	147
15	Strong coupling and energy funnelling in an electrically conductive organic blend. Journal of Materials Chemistry C, 2020, 8, 11485-11491.	5.5	5
16	Organic polariton lasing with molecularly isolated perylene diimides. Applied Physics Letters, 2020, 117, .	3.3	11
17	FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation. Journal of Materials Chemistry C, 2020, 8, 8953-8961.	5.5	12
18	Chiral-perovskite optoelectronics. Nature Reviews Materials, 2020, 5, 423-439.	48.7	445

#	Article	IF	CITATIONS
19	Solutionâ€Processed Faraday Rotators Using Single Crystal Lead Halide Perovskites. Advanced Science, 2020, 7, 1902950.	11.2	17
20	Temperature-Induced Self-Compensating Defect Traps and Gain Thresholds in Colloidal Quantum Dots. ACS Nano, 2019, 13, 8970-8976.	14.6	8
21	Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nature Energy, 2019, 4, 197-205.	39.5	132
22	Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites. Advanced Materials, 2019, 31, e1807628.	21.0	64
23	Contactless measurements of photocarrier transport properties in perovskite single crystals. Nature Communications, 2019, 10, 1591.	12.8	55
24	Molecularly isolated perylene diimides enable both strong exciton–photon coupling and high photoluminescence quantum yield. Journal of Materials Chemistry C, 2019, 7, 2954-2960.	5.5	19
25	Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. Nano Letters, 2018, 18, 7052-7059.	9.1	51
26	Emission Decay Pathways Sensitive to Circular Polarization of Excitation. Journal of Physical Chemistry C, 2018, 122, 23910-23916.	3.1	7
27	Perovskites for Light Emission. Advanced Materials, 2018, 30, e1801996.	21.0	417
28	Electron–phonon interaction in efficient perovskite blue emitters. Nature Materials, 2018, 17, 550-556.	27.5	472
29	Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018, 12, 528-533.	31.4	371
30	Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Letters, 2017, 17, 3701-3709.	9.1	409
31	Quantum Dot Color-Converting Solids Operating Efficiently in the kW/cm ² Regime. Chemistry of Materials, 2017, 29, 5104-5112.	6.7	17
32	Field-emission from quantum-dot-in-perovskite solids. Nature Communications, 2017, 8, 14757.	12.8	83
33	Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature, 2017, 544, 75-79.	27.8	319
34	Small-Band-Offset Perovskite Shells Increase Auger Lifetime in Quantum Dot Solids. ACS Nano, 2017, 11, 12378-12384.	14.6	23
35	Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dotÂsolids. Nature Materials, 2017, 16, 258-263.	27.5	563
36	Design of Phosphor White Light Systems for High-Power Applications. ACS Photonics, 2016, 3, 2243-2248.	6.6	37

#	Article	lF	CITATIONS
37	A comparative study of the photophysics of phenyl, thienyl, and chalcogen substituted rhodamine dyes. Photochemical and Photobiological Sciences, 2016, 15, 1417-1432.	2.9	17
38	Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11, 872-877.	31.5	1,868
39	Efficient Bimolecular Mechanism of Photochemical Hydrogen Production Using Halogenated Boron-Dipyrromethene (Bodipy) Dyes and a Bis(dimethylglyoxime) Cobalt(III) Complex. Journal of Physical Chemistry B, 2016, 120, 527-534.	2.6	49
40	Light-driven generation of hydrogen: New chromophore dyads for increased activity based on Bodipy dye and Pt(diimine)(dithiolate) complexes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3987-96.	7.1	52
41	Solvation and Rotation Dynamics in the Trihexyl(tetradecyl)phosphonium Chloride Ionic Liquid/Methanol Cosolvent System. Journal of Physical Chemistry B, 2014, 118, 12979-12992.	2.6	21
42	Deactivating Unproductive Pathways in Multichromophoric Sensitizers. Journal of Physical Chemistry A, 2014, 118, 10663-10672.	2.5	21
43	From Seconds to Femtoseconds: Solar Hydrogen Production and Transient Absorption of Chalcogenorhodamine Dyes. Journal of the American Chemical Society, 2014, 136, 7740-7750.	13.7	38
44	Photoinduced Charge Transfer in Porphyrin–Cobaloxime and Corrole–Cobaloxime Hybrids. Journal of Physical Chemistry C, 2013, 117, 1647-1655.	3.1	62
45	Intersystem Crossing in Halogenated Bodipy Chromophores Used for Solar Hydrogen Production. Journal of Physical Chemistry Letters, 2011, 2, 223-227.	4.6	140
46	Two-dimensional femtosecond stimulated Raman spectroscopy: Observation of cascading Raman signals in acetonitrile. Journal of Chemical Physics, 2009, 131, 214502.	3.0	51